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Abstract: This article suggests a new approach to visualize implicit surfaces by using
discrete Ray-Tracing. A preprocessing phase to rasterize the implicit surface is necessary
to make use of this kind of Ray-Tracing. Several methods were proposed to subdivide an
implicit surface. We extend their ideas to visualize this kind of surface directly into the
vozel space.

Up to date discrete Ray-Tracing, was only used in quite low resolutions (2563). At these
resolutions the quality of the generated images were not satisfying. One way to solve this
problem is increasing vozxel space resolution. Nevertheless using high definition 3D raster
grids would consume too much memory. Using an octree and assuming that the majority
of space will be empty, as such is the case in most scenes, an important memory saving
is achieved. Conversely the discrete ray traversal (three-dimensional DDA') performance
degrades significantly for high resolutions. We solved this problem by dividing the process
in two steps where optimal times of three-dimensional DDA are achieved.

1. Introduction
The main advantages of using implicit surfaces defined by implicit analytic functions are:

e Their generality, since most mathematical objects can be represented implicitly.
Planes, quadrics, parametric and more exotic surfaces described even by irreducible
equations are easily expressed under the implicit form.

e Compactness, since a very complex object can be defined by just one equation.

e Formal exactness, since it represents mathematical functions, allowing its applica-
tion in several scientific domains.

Implicit surfaces are very easily rendered by using Ray-Tracing. Algebraic surfaces
can be displayed using this algorithm applying Collins theorem [Hanrahan, 1983]. Nev-
ertheless more general implicit surfaces like the one suggested by Blinn [Blinn, 1982,

DDA is an abbreviation for Digital Differential Analyzer)



Muraki, 1991, Bidasaria, 1992] are not algebraic and cannot be easily rendered using
Ray-Tracing. Fujimoto [Fujimoto et al., 1986] with ARTS, uses this kind of surfaces
but loosing the mathematical exactness, since he adopts the simplifications suggested by
Blinn, that give very nice images but which are not exact.

More exact Ray-Tracing methods to render this generalized implicit functions ap-
peared later. Kalra and Barr [Kalra and Barr, 1989] have proposed a method using
Lipschitz constants. Their method is guaranteed to find the exact intersections between
rays and surfaces totally automatically. Duff [Duff, 1992] has suggested using interval
arithmetics to ray trace these kind of functions. He also guarantees intersection exactness
but his method is simpler and more robust, since even precision errors are discarded.

Both methods have the same characteristics, and have also the same disadvantages.
The whole space has to be repetitively subdivided for all rays to test if each one cross the
surface in recursively subdivided regions.

A faster Ray-Tracing method was proposed in [Yagel et al., 1992]. It is called Discrete
or Raster Ray-Tracing, because it works entirely into the 3D voxel space, the discrete
space. A preprocessing phase to rasterize the scene into the voxel space is necessary to
make use of this kind of Ray-Tracing. The rasterization process assigns the objects’ outline
geometry to a 3D voxel grid. In this process only the part of the geometry that pierces
the voxel is assigned to it. This voxel grid is normally stored in the 3D array format, but
it can also be stored in an octree ([Fujimoto et al., 1986], [Sung, 1991],[Stolte and Caubet,
1992], [Gargantini, 1993]). Normally the data stored into the voxel are simply: normal
vector, object’s color and sometimes other object’s rendering parameters in this region.
The voxel is generally with pixel dimensions. After rasterizing the scene all the rays cross
this discrete space by a totally discrete traversal algorithm, the three-dimensional DDA.
When a non empty voxel is reached an intersection is assumed and the illumination can
be calculated using the data stored into the voxel.

To rasterize an implicit surface we extended the subdivision method proposed by Kalra
and Barr [Kalra and Barr, 1989] to visualize this kind of surface directly into the voxel
space by using discrete Ray-Tracing. Instead of recursively subdividing the surface for
each ray, we subdivide the whole space recursively just once, during the rasterization
phase. Duff’s subdivision method [Duff, 1992] could be used instead. Currently we have
been testing this later method comparing the results obtained with Kalra and Barr’s
method.

The big Discrete Ray Tracing advantage is that no expensive intersection calculation
between ray and surfaces is needed, allowing a very fast rendering. The big disadvantage
is the high resolution 3D voxel grid necessary to achieve good quality images. This grid
is then limited to the machine memory size. The grid resolution in [Yagel et al., 1992] is
2563 to a 80 Mb machine. The maximum resolution was 320 to a 128 Mb machine. This
easily denotes the difficulty to run this method in a normal workstation. It is also clear
that these resolutions are not enough for getting good quality images.

Considering this problem, we suggested elsewhere [Stolte and Caubet, 1995a, Stolte
and Caubet, 1995¢c, Stolte and Caubet, 1995b] an implementation of the Discrete Ray
Tracing using an octree. Using the octree suggested there the utilization of the method
will not be dependent on the machine memory, but on the number of occupied voxels.
On this way simple scenes can be generated in machines poor in memory. On the other
hand, it allows to use higher resolutions necessary to get good quality images, which is
impossible nowadays by using directly 3D grids.

Nevertheless as stated in [Yagel et al., 1992] most of method’s processing cost falls
in the discrete traversal algorithm, namely the Three-dimensional DDA. In [Yagel et al.,
1992] a non conventional DDA was created to reduce this time. This solution is not



enough in high resolution 3D grids. It is a known fact that its efficiency drops between
the fifth and the sixth levels of the octree ([Fujimoto et al., 1986], [Sung, 1991]). We
suggested then a two step process to profit of its optimal performance in both steps. This
allows us to visualize quite huge 3D grids in short time. On the other hand, the algorithm
precision is very important for the correctness of this approach. The reason is that the
transition between the two levels is calculated in floating point arithmetics. Our DDA
is similar to the one shown in [Fujimoto et al., 1986] but the mapping of floating point
values in fixed point using integer variables, offers, at the same time, efficiency, accuracy
and multi-precision flexibility.

2. Rasterizing Implicit Surfaces

To rasterize implicit functions we’ve implemented the method suggested in [Kalra and
Barr, 1989]. Although it is not properly a “vozelization” algorithm, its subdivision tech-
nique can be used to rasterize a surface. The method guarantees that no part of the
object would be lost assuring a good rasterization. The main advantage of the method
is fast convergence to the surface which drastically improves the performance. Another
advantage of the method is that it subdivides the space the same way an octree does,
which permits using almost the same algorithm to both tasks, subdivide the implicit sur-
face and display the resulting octree. An octree approach was implemented in [Wilhelms
and Van Gelder, 1992] but for isosurfaces in volumetric data. In this type of data the
contents of the voxels are not known a priori, which obliges utilizing a setup phase to
estimate the minimum and maximum voxels’ values of an octree’s octant. On the other
hand, rasterizing an implicit function avoids any setup phase of the octree since the voxels
the function will occupy can be predicted.

In [Bloomenthal and Wyvill, 1990] the octree is used to help polygonizing implicit
functions assuming that pure octree is only good for a coarse representation in interactive
applications. Although, we’ve implemented a voxel visualization method using our oc-
tree which permits us to visualize interactively implicit functions contained in 5123 voxel
volumes in near real time. The quality obtained is superior than using polygons.

The two functions used in this article are “metaballs” ([Blinn, 1982], [Muraki, 1991],
[Bidasaria, 1992]) and their equations are:
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Equation “a” corresponds to the surface shown in Figure 5, which was rasterized in 5
minutes and 51 seconds in a Crimson SGI workstation (R4000+R4010,100MHz,128Mb)
for a 10242 resolution. Equation “b” corresponds to the surface shown in Figure 6, which
was rasterized in 15 minutes and 30 seconds in the same machine for the same resolution.
Several optimizations, already devised but not yet done, are possible and can hopefully
reduce these times significantly. Nevertheless there are other rasterization methods that
could be faster ([Duff, 1992] and [Taubin, 1994]). We are currently comparing these algo-
rithms to decide which one has the best results in terms of speed, quality and generality.



3. The Octree

3.1 Introduction

The octree used here uses the spatial enumeration in fixed sized blocks, which we call
cells, of eight elements each. This approach allows a very fast vertical traverse due to
operations’ simplicity. We show that memory requirements for this octree are also very
interesting.

The octree is defined dividing space recursively in eight regions of equal dimensions
in each level until each of these regions has the size of a voxel (Figure 1). Each element
of each cell corresponds to a sub-space of the correspondent volume on a given level.

Figure 1 represents the octree implementation with five levels (left) and its visu-
alization into space (right). Five cells are associated to the octree of Figure, where
each one is located in successive levels of the octree. FEach element on last level
corresponds to a voxel into a 3D grid of 2°x2°x2% resolution, which can be rep-
resented by its coordinates: (X,Y,Z). The eight voxels showed in Figure 1, on last
level (k=4), pink-colored, are: V{(30,30,30) -the only one not seen in 3D diagram-
, V1(31,30,30), V2(30,31,30), V3(31,31,30), V4(30,30,31) -the only explicitly shown in
Figure-, V5(31, 30, 31), V5(30,31,31), V7(31,31,31). They are shown in this order in dia-
gram on the left. This order is the same adopted in [Fujimoto et al., 1986]. Each cell is
therefore an array of eight elements where the order of an element is related to its position
inside the sub-volume that the cell represents.
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Figure 1: Block diagram showing the octree

We define the order of the voxels in cell for octrees with n levels. Each coordinate X,
Y, Z of a voxel in an uniformly subdivided space with a resolution 2" x2" x2" is a binary
number that is defined as a summation of two powers (see below). The total number of
levels of the octree is n. Be k the index of a bit in binary coordinate (k = n — 1, the



rightmost bit; £ = 0, the leftmost bit). Therefore the index of an element of a cell in a
certain level £ is given by iy, = xy + 2-y; + 4-2;, where xy, yr and z; are the correspondent
bits of the coordinates X, Y and Z indexed by k:

n—1 n—1 n—1
X = Z ), - 2Dk Y = Z Yy - 2k 7 — Z 2 - 2Dk

k=0 k=0 k=0
0<X<2" -1 0<y <2"n—-1 0<zZ<2" -1

Tk, Yk, 2k € {0,1}

3.2 Vertical Traverse Performance

Because of the property of dividing space in eight portions recursively, the vertical traverse
of the octree shown here, has a complexity of O(loggsN) for a full octree, where N is the
total number of cells.

Although the vertical traverse performance depends also on the processing in each
of its levels. This processing is done by the algorithm that implements the lookup of a
voxel. This algorithm is given in a notation similar to the C' language (Figure 2). X, Y
and Z are the coordinates of the voxel to be searched. The << and >> operators are
respectively the binary left and right shift. The array cell is a pointer but the notation of
array is more convenient for clarity purposes. Hence variable ¢ does not really exist. At
algorithm exit variable cell will contain the address of the cell where the voxel is (a null
address indicates that voxel does not exist) and the value of i is the voxel index in this
cell (in the real implementation, the pointer cell has the voxel address).

mask =1 << (n —1)

cell = octree root cell

bool = TRUE

while (bool)

{i=0

if (Z and mask) #0) i=1i+4
if (Y and mask) #0) i=1i+2
if (X and mask) #0) i=i+1
if ((mask and 1) == 0)

{ if (cell[i] #0)
{ mask = mask >> 1
cell = cell 1]

else bool = FALSE

else bool = FALSE

Figure 2: Octree vertical traverse

In Figure 2 algorithm, variable mask has initially the bit n — 1 set (n is the number of
octree levels, as seen before) and all the other reset. The pointer cell receives the address
of the first octree cell, which is the father of the whole octree. The main processing is
done into a loop shown here by a while command. The loop is totally controlled by



variable mask which is shifted right in each successive cell. When mask arrives to one,
the loop is interrupted as shown. Otherwise, the index of the element in cell is initialized
and calculated. Making a logical “and” between mask and each coordinate is an easy
and fast way to ignore a zero bit, which indicates no contribution to the index. On the
other hand, if it is one, its contribution is accumulated in the index.

Therefore, variable mask has in reality two different functions in algorithm. These
functions are the exit control of loop and filter of the bit to be considered. This is very
important because with this scheme the proper bit and the loop control are both updated
by just one shift operation. When a whole branch of the octree does not exist (when
celli] is zero) the process is immediately interrupted. This extra test is necessary to the
algorithm correctness and reduces useless processing when voxel does not exist.

Then, in this algorithm, there are the following operations: 4 logical ands, 3 additions,
2 comparisons and 1 shift. This makes only 10 integer arithmetic operations for each octree
level. But it is even faster for empty regions.

It is easily shown that this implementation is faster than the linear octrees ([Gargan-
tini, 1982]), but this demonstration is out of the scope of this article. This conclusion is
particularly interesting since linear octree serves as a base to many octree implementations
([Glassner, 1984], [Sung, 1991], [Gargantini, 1993]).

3.3 Memory Requirements

The octree shown here is formed with cells of eight elements each. Each element can have
eight son cells, right from the first cell. Hence, the memory allocation for the full octree
obeys a geometric series with step 8:

1-8"

80 + 8 +8248%... 48" = 3

For last level, there are 8"~! cells that will correspond to 8" leaf elements or voxels.
Then for indexes, there will be in a full octree the following number of cells:

1-8"0 1 gL

0, gl | @2 | Q3 n—2
8§ +8 +8 +8"...4+8 -3 -
A 3D array of voxels of 2" x2"x 2", which has 8" voxels, will contain 8"~! cells. There-
fore a full octree has practically %XS“*1 more cells than the equivalent 3D array.
Although memory requirements for the full octree will be about 14% greater than a
3D grid, it is highly improbable that this situation would happen without being forced.
Anyway, memory requirements for a 3D grid are still prohibitive for high resolutions.
Hence the octree as proposed here seems to be much more appealing than the 3D grid in
the Discrete Ray Tracing context, where grid resolution is high.

4. Skipping Empty Regions

The algorithm in Figure 3 allows us to skip empty spaces without descending or ascending
the octree while Three-dimensional DDA traverses empty regions. Variable mask is shown
in algorithm of Figure 2. It is used in our Three-dimensional DDA to identify the exact
bit that changes the value only when the DDA leaves the empty region. If it has been



changed the DDA’s loop is finished and the octree’s vertical traverse restarts as shown in
algorithm of Figure 3.

Push and pop operators of Figure 3 denote an external stack to keep the addresses
of the parents cells, as done by many authors ([Fujimoto et al., 1986], [Sung, 1991] et
[Gargantini, 1993]). The first part of main loop ascends the octree while no common
father is found. The second part descends the octree (basically the same as Figure 2).
The third part is the Three-dimensional DDA.

/* Initialize XYZ and mask as follows (each square is a bit) */

XYZ(—llelxl...lxl0|y|y|...|y|0|z|z|...|z|
mask < [0 [ 1 [0 [..J]OJO[1]O]..]O0OJOJIL]O]..]0]

cell = root cell address of octree
push(cell)
ic =0 /* index of last changed coordinate*/
test_end = mask
XYZ_ant = XY Z
/* repeat while inside octree*/
while (true)
{ XYZ_ant = XY Z_ant zor XY Z
if (XY Z_ant and test_end) break
mask = mask >> 1
/* ascend octree until common father arrives*/
while (XY Z_ant and mask)
{ pop
mask = mask << 1

mask = mask << 1
pop(cell)
X =extract X from XY Z
Y =extract Y from XY Z
Z = extract Z from XY Z
/* The lines different from fig. 2 are commented */
bool =TRUE
while (bool)
{ push(cell) /* push address cell */
1 =0

if ((Z and mask) #0)i=1i+4
if (Y and mask) #0)i=1i+2
if (X and mask) #0)i=1:+1
if ((mask and 1) == 0)

{4f (cellli] #0)
{ mask = mask >> 1
cell = cellli]

}
else bool = FALSE

}
else bool = FALSE

}
if (cell[i] #0)
{ /*second step*/ }
while (in empty region)
{ /*execute 3DDDA step*/ }

Figure 3: Octree traversal with empty space skip

5. Results

In the tables of Figure 4, our results for the test image 1 and test image 2 are sum-
marized. Images (Figures 5 and 6) were calculated using a Crimson SGI worksta-
tion (R40004+R4010,100MHz,128Mb). These tables indicate the screen resolution (first
columns), 3D grid resolution (second columns), and times for the two step ray tracing
with different number of levels of the octree in the first step and the second step (third



Results for image 1 (Figure 5) Results for image 2 (Figure 6)
Res. 2D | Res. 3D | RT 2 steps Res. 2D | Res. 3D | RT 2 steps
10242 | 1024° | 3°10” (4+6) 10242 | 1024° | 3'51” (4+6)
2217 (5+5) 2’49” (5+5)
2°03” (6+4) 2'25” (6+4)
2°01” (7+3) 227 (7+3)
5122 1024% | 047" (4+6) 5122 1024% | 0°’58” (4+6)
0’35” (5+5) 0°42” (5+5)
0°31” (6+4) 0’36” (6+4)
0°30” (7+3) 0’37” (7+3)
2562 1024% | 012" (4+6) 2562 1024% | 0’147 (4+6)
0°09” (5+5) 0’10” (5+5)
0°07” (6+4) 0°09” (6+4)
007" (7+3) 0°09” (7+3)

Figure 4: Results for image 1 and image 2

columns). The numbers in parentheses are respectively the number of levels in the first
step and in the second step. The “+” separating them indicates that their addition gives
the total number of octree levels. All times include the generation of a PostScript file of
the image (the code was compiled without optimization options).

As observed, better times are with 6 levels in first step. Although the two figures are
clearly of completely different complexities the times are quite similar. A clear advantage
of our approach in comparison with classic Discrete Ray Tracing is that performances are
higher when the scene is emptier. This situation is ideal with an octree, since it implies
better memory savings and better performances.

6. Conclusion

We have presented an implicit surface visualization algorithm based in our discrete
Ray-Tracing system [Stolte and Caubet, 1995a, Stolte and Caubet, 1995c, Stolte and
Caubet, 1995b]. The method is quite different than previous ones [Kalra and Barr, 1989,
Duff, 1992], since instead of recursively subdividing the space for each ray, we recursively
subdivide the space just once, storing the voxels into an octree. This allows also recal-
culating other images under other view points without a new rasterization. We avoid
expensive intersection calculations between rays and surfaces by simply assuming that a
reached non empty voxel is already the intersection as suggested in [Yagel et al., 1992].
Nevertheless our images’ quality is better since we can rasterize the surfaces in high 3D
resolution.

As verified by the results our method’s rendering performance is similar to the ones
obtained previously [Stolte and Caubet, 1995a, Stolte and Caubet, 1995¢c, Stolte and
Caubet, 1995b], showing that good quality high resolution images can be produced in
quite low times. The rasterization time can be longer than using polygons depending on
the complexity of the function. Considering that this kind of surface is very difficult to be
consistently converted into polygons, that several images can be produced under different
view points without any further rasterization, and that image quality and mathematical
exactness are better than using polygons, this rasterization time is negligible.
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Figure 5: Image 1



Figure 6: Image 2



