
Discrete Ray-Tracing of Huge Voxel Spaces

Nilo Stolte� and Ren�e Caubet

Institut de Recherche en Informatique de Toulouse

118, Route de Narbonne

31062 { Toulouse { France

stolte@irit.fr

Abstract
The quality of images produced by Discrete Ray-Tracing voxel spaces is highly dependent on 3d grid
resolution. The huge amount of memory needed to store such grids often discards discrete Ray-Tracing
as a practical visualization algorithm. The use of an octree can drastically change this when most of
space is empty, as such is the case in most scenes.

Although the memory problem can be bypassed using the octree, the performance problem still
remains. A known fact is that the performance of discrete traversal is optimal for quite low resolutions.
This problem can be easily solved by dividing the task in two steps, working in two low resolutions
instead of just one high resolution, thus taking advantage of optimal times in both steps. This is
possible thanks to the octree property of representing the same scene in several di�erent resolutions.
This article presents a two step Discrete Ray-Tracing method using an octree and shows, by comparing
it with the single step version, that a substantial gain in performance is achieved.

Keywords: Ray-Tracing, Discrete Ray-Tracing, Raster Ray-Tracing, Octree, Three-dimensional
DDA, Voxel.

1. Introduction

Even though many e�orts have been made to accelerate Ray-Tracing in many di�erent ways it still
has the reputation of being a high time consuming process, despite the fact of being widely accepted
as a very powerful and simple tool for rendering realistic scenes.

This reputation is justi�ed by the fact that 90% of the time is consumed in intersection calculations
between rays and objects [25], worsening for complex scenes since for each valid intersection new rays
are created that can potentially intersect other objects and create even more rays. Computational
time grows exponentially with the complexity of the scene.

This is the reason why many acceleration methods always try to reduce the number of intersections
between rays and objects. One way is using bounding volumes [19], grouping objects inside boxes or
spheres, and ignoring the bounding volumes not crossed over by rays, thus eliminating (hopefully)
most of the objects. A better approach for this method is organizing them hierarchically, since more
objects can be eliminated with less calculation. Although a serious disadvantage is that for the best
eÆciency of these hierarchies they should not be created automatically. However there are methods
for calculating tighter bounding volumes automatically [18], but properly grouping bounding volumes
into hierarchies remains a diÆcult task and intelligent methods can be very time consuming.

Another way is decomposing the space into subspaces, maintaining a list of objects present in each
subspace, and making rays to traverse only the subspaces where each ray passes through [7, 9, 4, 20,

�grants CNPq (Conselho Nacional de Desenvolvimento Cient���co e Tecnol�ogico - Brasil)

1

23, 21, 26, 8]. This is the same principle as the previous method, but non-crossed subspaces and their
included objects are discarded without any computation. This advantage diminishes when most of
the objects are concentrated in just few subspaces for regular subdivisions. The octree [9] contours
this problem, and has the the dual advantage of being simple and bounding objects into hierarchies
automatically. Another asset of space subdivision is that objects are detected in the exact order they
occur along a ray, thus eliminating regions not yet reached by the ray automatically.

Many other original methods have been suggested like Beam Tracing [12] and Ray-Tracing with
Cones [2], where several rays can be treated at once inside a beam. Another good example is ray under-
sampling [1], where less rays are shot and the illumination is hopefully most of the time interpolated.
The disadvantage of these methods is that their performance are very often dependent on the kind of
objects modeled and/or the complexity of the scene.

Methods that subdivide space require a preprocessing phase to rasterize the scene, called voxeliza-
tion [15, 16, 17, 11, 6, 22], where objects' contours are assigned to voxels into a 3D grid or octants into
an octree. In this process only parts of the geometry that pierce the voxels or octants are assigned. An
advantage of the octree in this context is that certain subdivision methods require octree-like recursive
space partitioning. One particularly interesting is proposed in [14] and [5], for implicit functions.

An eÆcient acceleration method based on space subdivision was proposed in [26]. It is called
Discrete or Raster Ray Tracing, because it works entirely in 3D voxel space. The big advantage of
this method is that no intersection calculation between rays and objects is needed, allowing a very
fast Ray Tracing. The big disadvantage is that a high resolution 3D voxel grid is needed to achieve
good quality images. This grid is then limited to the machine memory size. The grid resolution in
[26] is 2563 to a 80 Mb machine. The maximum resolution was 3203 to a 128 Mb machine. This
easily denotes the diÆculty to run this method in a normal workstation. It is also evident that these
resolutions are not enough for getting good quality images.

Considering this problem, we suggest in this paper an implementation of the Discrete Ray Tracing
using an octree. Using the octree suggested here the utilization of the method will not be dependent
on the machine memory, but on the number of occupied voxels. In this way simple scenes can be
generated in machines limited in memory. On the other hand, it allows to use higher resolutions
necessary to get good quality images, which is impossible currently by using 3D grids directly.

Nevertheless as stated in [26] most of method's processing cost falls in the discrete traversal algo-
rithm, namely the three-dimensional DDA. In [26] a 26 connected DDA was created to reduce this
time. This solution is not suÆcient in high resolution 3D grids. It is a known fact that its eÆciency
is optimal between the �fth and the sixth levels of the octree [7, 23]). We suggest a two step process
to bene�t for its optimal performance in both steps. This allows us to visualize quite huge 3D grids
in short time. On the other hand, the algorithm precision is very important for the correctness of
this approach. The reason is that the transition between the two levels is calculated in oating point
arithmetics. Our DDA is similar to the one shown in [7] but the mapping of oating point values in
�xed point using integer variables, o�ers, at the same time, eÆciency, accuracy and multiple precision
exibility.

Two step methods have been used before [24, 13], by using a regular 3D grid in the �rst step.
We use only one octree for both steps. Therefore, our approach is more exible, since the �rst and
second step resolution can be dynamically adjusted without modifying the data neither moving it;
more compact, since the empty space is not represented; and more eÆcient to skip empty volumes,
since our three-dimensional DDA procedure loops while inside them, not needing to consult cells. Our
skip procedure remembers Sung's "SimpleSkipParent" procedure [23] but in our case it's more eÆcient
and two steps approach eliminates the need of "ComplexSkipParent" procedure, the main problem in
Sung's algorithm.

We compare our two steps approach with the same program implemented with a single step.
Results show that we achieved a �ve fold reduction in time.

2. Octree Traversal

The method's ow control is done by the octree traversal algorithm presented in Fig.1. The octree
uses spatial enumeration in �xed sized blocks, which we call cells. A cell, which represents an octant,
is a simple array of eight elements, each one identifying a sub-octant and containing a pointer to a
descendent cell or a null pointer if sub octant is empty. The algorithm describes what we call the
"�rst step" traversal since it considers only octree upper levels.

initialize 3DDDA; /* Algorithm Fig.4 */
/* Initialize XYZ and mask as follows (each square is a bit) */

XYZ 0 x x ... x 0 y y ... y 0 z z ... z

mask 0 1 0 ... 0 0 1 0 ... 0 0 1 0 ... 0

cell=octree root cell address;
push(cell);
i c=0; /* Index of last changed coordinate */
end condition=mask<<1;
XYZ ant=XYZ;
/* Repeat while inside octree*/
while ((XYZ and end condition)==0)

begin
XYZ ant=XYZ ant xor XYZ;
mask=mask<<1;
/* Ascend octree until common father arrives*/
while (XYZ ant and mask)

begin
pop; /* Ascend one */
mask=mask<<1; /* octree level. */

end
mask=mask>>1;
pop(cell);
separate X,Y,Z from variable XYZ;
bool=TRUE;
while (bool) /* Descend octree */

begin
push(cell); /* push cell address */
i=0;
if ((Z and mask) 6=0) i=i+4; /*Calculate octant */
if ((Y and mask) 6=0) i=i+2; /*index. */
if ((X and mask) 6=0) i=i+1;
if ((mask and 1)==0) /*Not Last level? */
begin

if (cell[i] 6=0) /*Octant not empty? */
begin

mask=mask>>1; /* Descend one */
cell=cell[i]; /* octree level. */

end
else bool=FALSE; /*Empty octant! */

end
else bool=FALSE; /*Last level! */

end
if (cell[i]6=0) /* Cell not empty? */
begin

initialize second step ; /* Algorithm Fig.6. */
execute second step; /* Similar to this */

end /* algorithm. */
execute 3DDDA; /* Algorithm Fig.5. */

end

1

2

3

Figure 1: Octree traversal

Push and pop operators of Fig.1 denote an external stack to keep the addresses of the parent cells,
as done by many authors [7, 23, 8].

The �rst "while" identi�es the main loop (number 1 in Fig.1) where a ray is traced into octree
upper levels (�rst step). The second "while" loop (number 2 in Fig.1) ascends the octree until a
common parent of the current and the precedent voxel is found. The third "while" loop (number 3
in Fig.1) descends the octree until an empty octant or the current voxel (a leaf in octree upper step)
is found. In this last case the ray is traced into octree lower levels (second step). If the ray does

not reach a non-empty voxels in the second step, it continues to be traced in the �rst step. A ray is
traced by executing a three-dimensional DDA (algorithm Fig.5). Second Step initialization algorithm
is given in Fig.6. Second step execution is similar to the algorithm in Fig.1.

The algorithm's most important variable is mask. It has straight relationship with the variable
XYZ, which contains the three coordinates of a �rst step voxel into the same register variable (diagram
in Fig.1). The width of these coordinates in bits is the number of levels of the octree in the �rst step.
Initially the higher order bit corresponding to each coordinate in variable mask is set and all the other
reset (diagram in Fig.1). These set bits identify the current level of the octree and are exploited not
only to �lter the pertinent bits of X, Y, and Z, but also in a series of control tasks.

At the left side of the most signi�cant bit corresponding to each coordinate there is a carry bit
which is initially zero (diagram in Fig.1). A carry bit will be set if any of the coordinates is out of
the octree. In fact this is used as a �nal condition test (�rst "while" condition in algorithm).

A special strategy to ascend the octree, taking advantage of mask variable, was conceived in order
to optimize it (loop number 2). Only one coordinate changes in each interaction, and the di�erence
between this coordinate value and its precedent is always one. Due to the addition carry cascade
e�ect, an exclusive or ("xor") between XYZ ant (XYZ's precedent value) and XYZ will originate a
uninterrupted sequence of ones identifying all modi�ed bits. Since each coordinate bit corresponds to
one octree level, all set bits in this sequence also indicate an octant boundary transition or, in other
words, each one indicates that an ascension to the upper level must be done to �nd the neighbor
octant.

The procedure to descend the octree (loop number 3) is more complex. For each cell octree level
an octant index is calculated by grouping contiguously the three bits of X, Y, and Z to form an octal
digit [8]. While the indexed octant is not empty (not a null pointer) the algorithm descends one octree
level until the last level is reached.

list = NIL;
do

begin if (tMaxX < tMaxY)
begin

if (tMaxX < tMaxZ)
begin X = X + stepX;

if (X == justOutX)
return(NIL); /* outside grid */

tMaxX = tMaxX + tDeltaX;
end

else
begin Z = Z + stepZ;

if (Z == justOutZ) return(NIL);
tMaxZ = tMaxZ + tDeltaZ;

end
end

else
begin

if (tMaxY < tMaxZ)
begin Y = Y + stepY ;

if (Y == justOutY) return(NIL);
tMaxY = tMaxY + tDeltaY ;

end
else
begin Z = Z + stepZ;

if (Z == justOutZ) return(NIL);
tMaxZ = tMaxZ + tDeltaZ;

end
end

list = ObjectList[X][Y][Z];
end while(list == NIL);

return(list);

Figure 2: Three-dimensional DDA of Amanatides and Woo

3. Three-dimensional DDA

3.1. Introduction

Regular Space subdivision allows to use incremental techniques to identify ray-traversed voxels in
their exact order of appearance in a very eÆcient way due to simplicity and fast integer operations.
These techniques allow to implement Ray Tracing in a completely discrete way. For high resolution 3D
grids, this solution is not suÆcient. A better performance strategy becomes necessary. Our solution
is dividing the task in two steps. This approach forces the use of algorithms of connection 6 [26] for
the correct algorithm continuity in second step.

(d’,i1’)

l1 ∆dq1= ∆i1

h1

d

i1

h2(d’, i2’)

l2 ∆dq2= ∆i2

d

i2

d2’

i22’

l22

h22

d2’

i21’

l21

h21

Figure 3: Principles of our Three-dimensional DDA

second step �rst step

Fujimoto et al. [7] have suggested an incremental DDA for identifying ray-traversed voxels rapidly,
called 3DDDA. The main advantage of their approach is using integer arithmetics. Our three-
dimensional DDA is inspired on their implementation.

Another method was suggested by Amanatides and Woo ([3], Fig.2), which is similar to the one
shown in [20]. The big disadvantage of this method is using oating point calculation. Even though
in some processors the oating point additions are as fast as integer ones, the algorithm precision
is limited. Snyder [20] suggests that the algorithm could be implemented with integer arithmetic.
Our experience [21], on the other hand, demonstrated that this solution is not very precise. It also
generates many problems scaling t to an integer variable when (tmax � tmin) < 1.

For the two steps process, a 6 connected algorithm is required and also a very precise calculation is
needed. If the initialization is done with double precision (64 bits) variables, the maximum mantissa
precision is 53 bits [10]. However, the incremental calculus tends to propagate the errors very rapidly.

To prevent these errors, a higher precision than 53 bits is required. Using �xed point notation, it is
possible to enhance the precision, since all the 64 bits can be used instead of only 53. The solution is
straightforward, but this analysis is out of the scope of this article.

3.2. Principles and Initialization

Our three-dimensional DDA, illustrated in Fig.3, is based on the principles shown in [7]. The axis
of greatest movement is indicated by identi�er d and j�dj=max(j�xj; j�yj; j�zj), where �x, �y and
�z are components of ray's direction vector. The other two axes are indicated by identi�ers i1 and
i2, where �i1 and �i2 are the other two components of ray's direction vector. A general algorithm's
overview follows:

Execute step 1 and 2 until current voxel has exited empty octant:

1. if there is not an intersection between the ray and a voxel boundary perpendicular to
i1 or i2 inside current voxel, select driving axis (d); otherwise, select incremental axis
(i1 or i2) where intersection has occurred or the nearest to ray origin's if there are
two intersections (ex.: in Fig.3, i1 is selected between the two �rst intersections);

2. advance to next voxel by incrementing (or decrementing) current voxel selected axis
coordinate only;

if (�i1<0) initialize inc1 to -1;y

else initialize inc1 to 1;y

if (�i2<0) initialize inc2 to -1;y

else initialize inc2 to 1;y

d=oor(d'); /* integer coordinates */
i1=oor(i1); /* are adjusted to the */
i2=oor(i2); /* voxel origin */
put d, i1, i2 in XYZ;
signed q1=�d/�i1; /* calculate inverse slopes */
signed q2=�d/�i2;
q1=jsigned q1j;
q2=jsigned q2j;
/* for a negative drive displacement */
/* l1, l2 and d are negative */
if (�d<0) begin

l2=h1�q1-d';
l1=h2�q2-d';
d=-d;
inc q1=-q1;
inc q2=-q2;
initialize incd to -1;y

end
else begin

l1=h1�q1+d';
l2=h2�q2+d';
inc q1=q1;
inc q2=q2;

initialize incd to 1;y

end
convert l1, l2, q1 and q2 to �xed point;
d2' , i21' , i22' d', i1' , i2' (convert to 2nd step)
�rst time=1;
if (l1<l2) limit=�x integer part(l1);
else limit=�x integer part(l2);
ysee text for details

Figure 4: Three-dimensional DDA Initialization

Identi�ers l1 and l2 represent (as shown in Fig.3) coordinates in the driving axis where a voxel
transition in each incremental axis takes place. If the displacement along the driving axis is negative
(�d<0) the values of d, l1 and l2 are forced to be negative to indirectly reverse the boolean value of

the condition l1 < l2. This slight modi�cation in our original algorithm eliminates pointers or arrays,
allowing an implementation using only register variables.

The variables incd, inc1 and inc2 are respectively the increments for the coordinates d, i1 and i2
shifted to �t to the correspondent X , Y and Z in XY Z.

The �rst intersection points between the ray and each incremental axis are shown in Fig.3. The
next intersection points can be obtained adding the inverse slopes (q1 and q2) as indicated in Fig.3.
Identi�ers h1 and h2 are heights to �nd the �rst intersection points (algorithm Fig.4).

3.3. Implementation

Our Three-dimensional DDA algorithm is shown in Fig.5. All variables in this algorithm are integers.
Some are 64 bits integers representing real values in �xed point notation: q1, q2, l1 and l2.

XYZ ant=XYZ and mask; /* Filter last parent bits */
/* Loop while last parent bits unchanged */

while (TRUE) /* that is, loop while in empty octant */
begin

if (d 6= limit) /* Incremental axis transition? */
/* No, process driving axis */

begin /*Increment driving coordinate */
XYZ=XYZ+inc drive;
d=d+1;

/* Last parent bits changed? */
if ((XYZ and mask) 6= XYZ ant)

begin /*Yes, got out empty octant */
XYZ ant=XYZ-inc drive;
i c=0;
break; /* Exit loop */

end
end

else
/* Process incremental axis */
begin

/* Choose the nearest incremental axis */
if (l1 < l2)

begin /*Increment i1 axis coordinate */
XYZ=XYZ+inc1 ;
l1=l1+q1; /*Next intersection point */
if (l1 < l2) limit=�x integer part(l1);
else limit=�x integer part(l2);
if ((XYZ and mask)6=XYZ ant)

begin /* out empty octant*/
XYZ ant=XYZ-inc1 ;
i c=1;
break; /* Exit loop */

end
end

else
begin /*Increment i2 axis coordinate */

XYZ=XYZ+inc2 ;
l2=l2+q2; /*Next intersection point */
if (l1 < l2) limit=�x integer part(l1);
else limit=�x integer part(l2);
if ((XYZ and mask)6=XYZ ant)

begin /* out empty octant*/
XYZ ant=XYZ-inc2 ;
i c=2;
break; /* Exit loop */

end
end

end
end

Figure 5: Our Three-dimensional DDA

The algorithm begins always with an octant to be skipped. This octant could be a non-empty
�rst step voxel where no ray's intersection voxel is found in the second step. However, in most of

the cases this octant is an empty octant and its size is proportional to the level where it is situated.
In either case, the algorithm traverses this region, without consulting the octree, into a closed loop.
The algorithm's eÆciency resides in a very simple test to verify if traversal exited an empty region.
Although it resembles Sung's [23] test in "SimpleSkipParent" procedure in logic, ours is integrated
into the three-dimensional DDA and implemented with only two machine instructions (one logical
"and" and one "jump if not equal"), which is considerably faster. The condition to continue the loop
is that the current coordinate value, after incrementing it, has the same octant parent bits than its
initial value before the loop. This is conveniently done by checking if octant parent low order bit has
changed (algorithm Fig.5), which is essentially the same manner we know a ray arrived outside the
octree (algorithm in Fig.1 and discussion in section 2).

Amanatides and Woo's algorithm takes 5 operations per coordinate (not counting the end condition
neither the access to the 3D array), or 6 operations with our method to skip empty regions. Our
algorithm takes 5 operations for the driving axis and 7 operations for the other two axes. However
it can be reduced to 4 operations for the driving axis, avoiding incrementing XY Z, and substituting
XY Z by d in the empty region test. To do that we must change the negative number notation for l1,
l2, limit and d to one's complement.

Our algorithm is clearly optimized to process the driving axis, which is the axis where most
processing is done. In addition, although Amanatides and Woo's algorithm is conceptually very
simple it still depends on oating point arithmetic, which can a�ect eÆciency, and limits the precision
to 53 bits. Even if the precision problem could be solved with extended double precision (very rare in
current machines), the eÆciency would decrease, because extended double precision is usually slower
than double precision. Our algorithm on the other hand, works in 64 bits precision, and is optimized
to 64 bits machines.

3.4. Second Step Transition

The 3D grid representing the voxels is logically subdivided into two steps. The total resolution of this
grid is therefore divided into two lower resolution steps. A 10243 grid, for example, can be represented
in two steps as a 323 grid, where each voxel is in reality another 323 grid. This grid is represented by
an octree with 10 levels, where the �rst 5 levels are in �rst step and the second 5 levels are in second
step. When a ray is traced in the �rst level resolution and it arrives to an occupied voxel it must then
be converted to the second level to be traced in the grid contained in this voxel.

The transition algorithm (Fig.6) determines ray's entry point (XY Z2) in the second step grid and
enables a second three-dimensional DDA (essentially equivalent to the �rst step one) tracing the ray
along the second step sub-octree.

Thanks to our three-dimensional DDA concept the inverse slopes (q1 and q2) are conserved in the
second step and don't need to be recalculated.

This conversion or transition is considerably easier and faster for the �rst voxel of a secondary ray
(reected, shadow or refracted ray). In this case the ray starting point is always inside the �rst voxel
(algorithm's �rst part). Hence there is no need to determine ray entry point, but only to calculate l21
and l22 (Fig.3) and accommodate d

2
' , i

21
' , i

22
' (Fig.3) in XY Z2.

For a primary ray, or a secondary ray not in the �rst voxel, the slopes (inv q1 and inv q2), however,
have to be determined (for entry point calculation) but just when needed and once per ray. For a
primary ray that doesn't intersect any voxel in �rst step or a secondary ray that doesn't intersect any
voxel in second step, for example, they are not calculated.

The entry point is an intersection with coordinates int d, int i1, int i2, which always falls in
a �rst step voxel boundary plane. This boundary plane can be perpendicular to the driving axis
(modf(int d)=0, algorithm's second part) or perpendicular to a passive axis (modf(int i1)=0 or
modf(int i2)=0, algorithm's third part).

After initialization, the three-dimensional DDA works as in �rst step. An optimization that could
be done is to continue the second step without initializing it if the precedent voxel in �rst step is a

if ((secondary ray) and (XYZ==XYZ ant))
begin /* Secondary ray in 1st voxel */

if (�d<0) begin
l21=h21�q1-d2' ;
l22=h22�q2-d2' ;

end
else begin

l21=h21�q1+d2' ;
l22=h22�q2+d2' ;

end
put d2' , i21' , i22' in XYZ2;

end
else /* all other rays */
begin

if (�rst time) /* Calculate slopes */
begin /* just once. */

inv q1=�i1/�d;
inv q2=�i2/�d;
�rst time=0;

end
if (i c is driving axis)/* Intersection is */
begin /*in driving axis. */

if (�d<0) /* Get driving axis coor- */
begin /* dinate of intersection */

int d= jdj+1;
int d2= max 2nd step value;

end /* point for 1st and 2nd */
else /* step. When �d<0, */
begin /* intersection point is */

int d=d; /* at higher voxel */
int d2=0; /* boundary. */

end /* Calculate the other 2 */
int �d=int d-d'; /* coordinates. */
int i1=int �d�inv q1+i1' ;
int i2=int �d�inv q2+i2' ;
int i21 int i1 (convert 2nd step);
int i22 int i2 (convert 2nd step);
/* Calculate limits for inc. axes. */
if (�i1<0)

l21=-inv q1�modf(int i21)+int d2;
y

else

l21=inv q1�(1-modf(int i21))+int d2;
y

ymodf(n) ! fractional part of n

if (�i2<0)

l22=-inv q2�modf(int i22)+int d2;
y

else

l22=inv q2�(1-modf(int i22))+int d2;
y

end
else /* Intersection is in */
begin /* incremental axis */

if (i c is i1 axis) j=1, k=2;
else j=2, k=1;
get ij from ZYZ;
if (�ij<0)
begin

int ij= ij+1;
int i2j= max 2nd level value;

end
else
begin

int ij= ij;
int i2j= 0;

end
int �d=(int ij-ij')�signed qj;
int d=int �d+d';
int d2 int d (convert 2nd step);
l2j=int d2+inc qj;
int ik=int �d�inv qk+ik' ;
int i2k int ik (convert 2nd step);
if (�ik<0)

l2k=-inv qk�modf(int i2k)+int d2;
y

else

l2k=inv qk�(1-modf(int i2k))+int d2;
y

end;
d2=int d2;
if (�d<0) begin

l22=-l22;
l21=-l21;
d2=-int d2;

end
put int d2, int i21 and int i22 into XYZ2;

end;
convert l21, l22 to �xed point;
if (l21<l22) limit2=�x integer part(l21);
else limit2=�x integer part(l22);

Figure 6: Second step initialization algorithm

neighbor. Although fast, this Procedure must take in consideration error estimations to guarantee
53 bits precision. However it can be very interesting in cases where very few second step voxels are
traversed in the precedent �rst step voxel.

4. Results

Our results for the test image 1 are summarized in Fig.7. For test image 2, our results are summarized
in Fig.8. Images were calculated using a SGI Crimson workstation (R4000+R4010,100MHz,128Mb).
The �rst columns in these tables indicate the screen resolution. Second columns indicate 3D grid
resolution. Third columns give the time for single step ray tracing. Fourth columns indicate times
for two step ray tracing with di�erent number of levels of the octree in the �rst step and the second
step. The numbers in parentheses are respectively the number of levels in the �rst step and in the
second step. The "+" separating them indicates that their addition gives the total number of octree
levels. All these computational times include the CPU time for the voxelization and the generation
of a PostScript �le of the image. The code was compiled with debugging option and for 32 bits (the
calculation for the passive axes are doubled). Image 1 consumed 13.3 Mb for the voxels and 8.4 Mb
for the octree in a 10243 resolution. Image 2 consumed 37.8 Mb for the voxels and 24 Mb for the
octree in a 10243 resolution.

The best time in our two step process was always with 6 levels in the �rst step. This result was
expected because it agrees with DDA performance given by other authors [7, 23]. The best time we
have obtained in comparison with the single step process was with the largest 3D grid (20483) and
largest image resolution, which, in our two step process, is represented by one �fth of the single step
process time. This result agrees with the observation in [26] that most of the time of the discrete
ray tracing was spent in three-dimensional DDA. We have bypassed this problem creating the two
step process, thus pro�ting of its optimal performance. This was possible because of the the octree
multiple resolution characteristic.

Res. 2D Res. 3D RT 1 step RT 2 steps
10242 20483 25'06" 8'21" (4+7)

5'38" (5+6)
5'03" (6+5)
5'36" (7+4)

10242 10243 12'52" 3'59" (4+6)
3'03" (5+5)
2'59" (6+4)
3'40" (7+3)

5122 10243 3'28" 1'14" (4+6)
1'00" (5+5)
0'59" (6+4)
1'09" (7+3)

2562 10243 1'06" 0'33" (4+6)
0'29" (5+5)
0'29" (6+4)
0'32" (7+3)

Figure 7: Comparison results for image 1 (Fig.9)

Res. 2D Res. 3D RT 1 step RT 2 steps
10242 10243 18'11" 5'27" (4+6)

4'05" (5+5)
3'44" (6+4)
4'04" (7+3)

5122 10243 7'10" 2'05" (4+6)
1'44" (5+5)
1'44" (6+4)
1'46" (7+3)

2562 10243 2'02" 1'14" (4+6)
1'09" (5+5)
1'07" (6+4)
1'09" (7+3)

Figure 8: Comparison results for image 2 (Fig.10)

A curious fact however is that the advantage of the two step process decreases (although the
computational times are always better than the single step ones) for lower screen resolutions. We
believe that the origin of this behavior is the oating point calculation during the transition of the
two steps. Therefore, our system is ideal for very high resolution 3D grids and large images. The
resolution of the 3D grid is limited by the surface of the object and the memory size.

5. Conclusion

We presented the implementation of a Discrete Ray Tracing using an octree. A method to bypass
completely the vertical traversal of the octree over empty regions was implemented (as previously
shown). In empty regions, the DDA stays in a closed loop, thus reducing in about 50% the global
time over the previous implementation. Our results with simple test scenes were similar to the ones
obtained in [26]. Since the performance is very sensitive to the DDA processing and since the procedure
of skipping empty regions still run the complete DDA, we have assumed that a multiple precision DDA
(as briey described previously) could lead us to even better results. E�ectively this was veri�ed for
high resolution grids and high resolution images. The advantage of the method decays though for
lower resolutions probably due to the oating point calculation for the transition between the two
steps. Therefore the method is an eÆcient tool to visualize huge volumetric data realistically.

References

[1] T. Akimoto, Mase Kenji, and Suenaga Y. Pixel-Selected Ray Tracing. IEEE - CGA, 6(4):14{22,
1991.

[2] John Amanatides. Ray Tracing with cones. Computer Graphics, 18(3):129{135, 1984.

[3] John Amanatides and Andrew Woo. A Fast Voxel Traversal Algorithm for Ray Tracing. In
Eurographics'87, pages 3{9, Amsterdam, August 1987. North Holand.

[4] James Arvo and David Kirk. Fast Ray Tracing by Ray Classi�cation. Computer Graphics,
21(4):55{63, 1987.

[5] H. B. Bidasaria. De�ning and Rendering of Textured Objects through The Use of Exponential
Functions. Graphical Models and Image Processing, 54(2):97{102, March 1992.

[6] D. Cohen and A. Kaufman. 3D Scan-Conversion Algorithms for Linear and Quadratic Objects.
Volume Visualization, pages 280{301, 1990.

[7] Akira Fujimoto, Takayaki Tanaka, and Kansei Iwata. ARTS: Accelerated Ray Tracing System.
IEEE - CGA, 6(4):16{26, 1986.

[8] Irene Gargantini. Ray tracing an Octree: Numerical Evaluation of the First Intersection. Com-
puter Graphics forum, 12(4):199{210, 1993.

[9] Andrew S. Glassner. Space Subdivision for Fast Ray Tracing. IEEE - CGA, 10(4):15{22, 1984.

[10] David Goldberg. What Every Computer Scientist Should Know About Floating-Point Arithmetic.
ACM Computing Surveys, 23(1):5{48, March 1991.

[11] Ned Greene. Voxel Space Automata: Modeling with Stochastic Growth Processes in Voxel Space.
Computer Graphics, 23(3):175{184, July 1989.

[12] Paul S. Heckbert and Pat Hanrahan. Beam Tracing Polygonal Objects. Computer Graphics,
18(3):119{127, 1984.

[13] David Jevans and Brian Wyvill. Adaptative Voxel Subdivision for Ray Tracing. In Proceedings
of Graphics Interface '89, pages 164{172, Toronto, Ontario, June 1989. Canadian Information
Processing Society.

[14] Devendra Kalra and Alan Barr. Guaranteed Ray Intersections with Implicit Surfaces. Computer
Graphics, 23(3):297{306, July 1989.

[15] A. Kaufman. An Algorithm for 3D Scan-Conversion of Polygons. In Eurographics'87, pages
197{208, Amsterdam, August 1987. North Holand.

[16] Arie Kaufman. EÆcient Algorithms for 3D Scan-Conversion of Parametric Curves, Surfaces, and
Volumes. Computer Graphics, 21(4):171{179, July 1987.

[17] Arie Kaufman and Reuven Bakalash. Memory and Processing Architecture for 3D Voxel-Based
Imagery. IEEE - CGA, November 1988.

[18] Timothy Kay and James Kajiya. Ray Tracing Complex Scenes. Computer Graphics, 20(4):269{
278, August 1986.

[19] S. M. Rubin and T. Whitted. A 3-Dimensional Representation for Fast Rendering Complex
Scenes. Computer Graphics, 14(3):110{116, 1980.

[20] John Snyder and Alan Barr. Ray Tracing Complex Models containing Surface Tesselations.
Computer Graphics, 21(4):119{128, 1987.

[21] Nilo Stolte and Ren�e Caubet. Some More Enhancements to Ray Tracing. In Compugraphics'92,
pages 53{60, Lisbon, December 1992. Harold P. Santo.

[22] Nilo Stolte and Ren�e Caubet. A fast scan-line method to convert convex polygons into voxels.
In Compugraphics'93, pages 164{170, Alvor, December 1993. Harold P. Santo.

[23] Kelvin Sung. A DDA Traversal Algorithm for Ray Tracing. In Eurographics'91, pages 73{85,
Amsterdam, June 1991. North Holand.

[24] Markku Tamminen, Olli Karonen, and Martti Mantyla. Ray-casting and block model conversion
using a spatial index. Computer-Aided Design, 16(4):203{208, July 1984.

[25] Turner Whitted. An Improved Ilumination Model for Shaded Display. Communications of the
ACM, 23(6):343{349, 1980.

[26] Roni Yagel, Daniel Cohen, and Arie Kaufman. Discrete Ray Tracing. IEEE - CGA, 12(5):19{28,
1992.

Figure 9: Image 1

Figure 10: Image 2

