
Visualizing Remote Sense Depth Maps using Voxels

Nilo Stolte

stolte@dcs.kinsgton.ac.uk

School of Computer Science & Eletronic Systems

Kingston University

Penrhyn Road, Kingston upon Thames

Surrey KT1 2EE England

Abstract

This article presents a new method for visualizing remote sense depth maps by using voxels.

Voxels have been introduced in the 80's to accelerate Ray Tracing, a very time consuming rendering

algorithm. With the advent of new technologies for obtaining volumetric data in medical images,

voxels were immediately accepted for their representation. New kinds of algorithms were created for

visualizing this kind of data. This new research area opened the door for completely new concepts

and the idea of discrete graphics has ourished. However, the huge amounts of memory as well as high

processing times generally necessary for accomplishing discrete graphics have practically discarded it

as a practical visualization tool.

New techniques to represent high-resolution volumes using hierarchical data structures and vi-

sualization techniques able to eÆciently skip over empty space signi�cantly changed this panorama.

This is the ideal arena for normal Computer Graphics surfaces to be visualized in the voxel format.

The visualization of remote sense depth maps can also bene�t of these techniques and pro�t of a

number of advantages over traditional graphics.

Key Words: Voxel, Voxelization, Implicit Surfaces, Octree, Visualization.

1 Introduction

Voxels are 3D versions of pixels and have been used fairly commonly by the Computer Graphics com-
munity. They have been used mainly for accelerating time consumming visualization algorithms such
as ray-tracing and radiosity [Fujimoto et al., 1986, Glassner, 1984, Snyder and Barr, 1987, Jevans and
Wyvill, 1989, Endl and Sommer, 1994]. A new application for the use of voxels has arrived when
3D medical imagery such as CT and MRI started to appear. These data can be easily obtained in
the voxel format. A whole new �eld in visualization then started to consolidate itself, namely "Vol-
ume Rendering" (also known as "Volume Visualization") [Kaufman et al., 1993]. The main problem in
this area are the high rendering times necessary to render volumes, basically based on the ray-casting
algorithm. In between standard Computer Graphics and Volume Rendering another technique called
"Discrete Ray-Tracing" showed up [Yagel et al., 1992]. It basically works as Ray-tracing but entirely
in a voxel volume. Recent techniques [Stolte and Caubet, 1995] have been introduced to accelerate the
rendering time of discrete scenes mostly containing empty space. This is the ideal arena for normal
Computer Graphics primitives to be visualized in the voxel format. This requires a conversion from
analytic surfaces to voxels, process called "voxelization" [Kaufman, 1987a, Cohen and Kaufman, 1990,
Kaufman, 1987b]. Several kinds of surfaces can be converted to voxels, including one the most modern
modeling paradigm: implicit surfaces [Kalra and Barr, 1989, Du�, 1992, Taubin, 1994, Stolte and Caubet,
1997].

Remote sense depth �elds are basically terrains, that can be seen as surfaces. This kind of data can
be immediately mapped into voxels and it can be easily visualized using the techniques explained in the
former paragraph. The big advantage of using voxels in this context is that each "pixel" from the remote

sense depth maps can be stored directly in each voxel. This eliminates the problem of texture mapping.
Also clipping parts of the terrain to add new features is not necessary; the voxels ocupying the area
corresponding to new feature can be simply deleted and the voxels of the new feature superposed. New
features can be all sort of objects, such as synthetic objects (i.e. objects that have been voxelized).

The use of voxels to represent remote sensing depth maps is much more natural and makes manipu-
lation of the data as simple as drawing objects on the screen. New techniques to visualize these kind of
voxels models (surface-based voxel models) interactively, using GL/OpenGL points, enables stereoscopic
visualization and manipulation using virtual reality techniques.

2 Voxels storage: Octree

High-resolution 3D grids are essential for good quality representation and rendering in discrete graphics.
The same is valid for 2D screens. The image quality and the representation will be better in higher
resolutions than in low resolutions. Few years ago, it was very uncommon to �nd high resolution frame-
bu�ers in an ordinary computer. Nowadays, this situation has changed because the price of the memory
has drastically dropped.

y

x z

k

Z

Y

X

i

0 1 2 3 4

31 1 1 1 1 1

30 1 1 1 1 0

30 1 1 1 1 0

7 7 7 7 4
k

levels

z

y

x

index

bits

bits

bits

k

k

k

root cell
0 1 2 3 4 5 6 7

k=0

0 1 2 3 4 5 6 7

k=1

0 1 2 3 4 5 6 7

k=2

0 1 2 3 4 5 6 7

k=3

0 1 2 3 4 5 6 7

k=4

voxel (30,30,31)

V V V V V V V V0 1 2 3 4 5 6 7

Figure 1: Left: Octree in the memory; Right: correspondent volume in the space

However, three-dimensional frame bu�ers consume much more memory than 2D frame bu�ers. For
example, a 10243 3D grid is equivalent to 1024 10242 frame bu�ers. Therefore, the memory consumption
for a 3D grid can be thought as 3 orders of magnitude greater than an equivalent 2D bu�er. Clearly,
ordinary computers can still not support 3D grids of such high resolutions. Thus, it is not unusual to �nd
fully or partially compressed volumes to compensate the enormous memory requirements. This problem
resembles that of real time video image sequences, which require some kind of compression. Compression
algorithms are very time consuming and for real-time video they are generally implemented in hardware.
Unfortunately, there is no such available hardware to enable high-resolution discrete graphics in today's
machines.

In 2D images only the color and/or intensity stored in the pixel is enough to precisely describe one
image. Three-dimensional data sets also generally store the intensity/color in each voxel. However, this
is not enough to completely describe the 3D volume for rendering purposes. In the rendering process the

illumination is calculated using the normal vectors.
Equipments generating medical data sets generally deliver convoluted volumes. In these conditions, it

is easy to approximate the normal vectors using a technique called central di�erence. In this technique,
the voxel intensities are considered as implicit function values and the normal is calculated by applying
the gradient to the function. Since the function is not known, the gradient is calculated by applying the
partial derivatives de�nition. Nevertheless, the derivatives calculated in this way are correct only when
the limit of the size of the voxel tends to zero. This would imply an in�nite resolution volume. Obviously
this is not possible since the voxel size is always greater than zero because of the �nite resolution of the
volume. Therefore, the normal vectors calculated in that way will be always approximate.

Another diÆculty is that the normal vectors must be normalized in order to be useful in the rendering
process. This demands an additional amount of time in the rendering process or extra memory to store
the normalized normal vector in the voxels. Thus, the already very high memory requirements result
completely unpractical if the normal vectors are stored in the volume.

Our solution is to represent in high resolutions only the part of the volume where the surface transitions
take place. This can be accomplished by using an octree. In fact, the octree allows in this way to compress
the volume, assuming that most of it is empty, which is generally the case in most common scenes. An
interesting feature, though, is that the interior part of the volumes in this representation is known as
opposed to polygon representations. Polygon representations (polytopes) do no allow the representation
of their interior space. This can be seen as a signi�cant disadvantage of polytopes.

The compression obtained with the octree allows the normal vectors storage in the voxels and at the
same time very high resolutions in normal worksations.

Figure 1 illustrates the octree implementation representing an octree with 5 levels (diagram on the
left side) and its visualization in the space (on the right). In practice, an octree with 9 levels is usually
used, thus de�ning a volume of 5123. In Fig. 1 �ve cells, one for each di�erent level, are shown. Each cell
has eight elements, all representing the eight equally sized subdivisions of the cell. At the last level (level
k, such that k = 4), each element corresponds to a voxel of a 3D grid representing a 25�25�25 volume.
These voxels can be noted by their coordinates, (X;Y; Z), as follows: V0(30; 30; 30) - the only one not
visible in the 3D representation-, V1(31; 30; 30), V2(30; 31; 30), V3(31; 31; 30), V4(30; 30; 31) -indicated in
the �gure-, V5(31; 30; 31), V6(30; 31; 31), V7(31; 31; 31).

The order of the voxels in a cell is the same as adopted in [Fujimoto et al., 1986]. The de�nition of this
order for an octree of n levels is given as follows. This octree represents a volume of 2n�2n�2n resolution.
Each coordinate X , Y , Z of a voxel in this volume is a binary number de�ned by an accumulation of
powers of two. Let k be an index of a bit in the binary coordinate (where k=n�1 is the rightmost bit,
and k=0 is the leftmost bit). Then, the index of an element in a cell is given by the following formula:
ik=xk+2�yk+4�zk, where:

X =

n�1X

k=0

xk � 2
(n�1)�k Y =

n�1X

k=0

yk � 2
(n�1)�k Z =

n�1X

k=0

zk � 2
(n�1)�k

0 � X � 2n � 1 0 � Y � 2n � 1 0 � Z � 2n � 1

xk ; yk; zk 2 f0; 1g

It is clear by this de�nition the relationship between the voxels' binary coordinates and the levels of the
octree. Each bit correspond to one octree level and the combination of the three bits of each coordinate
in a level k forms the index of the element in each cell of the octree at the level k. This relationship is
fully exploited in the implementation of the octree generation presented in the next section.

3 Octree Generation

Our octree is a classical pointer octree, where the root node is de�ned by a pointer called \octree", as
shown in Fig. 2. This pointer points to an array of pointers with eight elements, each one representing
one eighth of the original volume. Each of these arrays is called a cell. A null pointer means that the

char *octree;/* pointer to the �rst free octree byte */
char *free space; /* pointer to the �rst free byte in a block */
int free bytes; /* number of remaining free bytes in a block */
int X ant, Y ant, Z ant, mask1, mask2;

init octree() f
/* Initialize masks as follows (each square is a bit) */
/* n = number of octree levels */
/* nb+1 = number of variable bits */

mask1
nb n+3 n+2 n+1 n n-1 n-2 5 4 3 2 1 0

0 ... 0 0 0 1 0 0 ... 0 0 0 0 0 0

mask2 1 ... 1 1 1 0 0 0 ... 0 0 0 0 0 0

octree free space alloc block(); /* allocates one block */
free bytes Size of Block�Bytes in Cell;
free space free space+Bytes in Cell;
push(octree);
/*variables to �nd common parent */
X ant 0; Y ant 0; Z ant 0;
g

store in octree(X,Y,Z,input)
int X,Y,Z;
any input;
f char **pcel;
/* Ascend octree to �nd a common parent */
while (((X and mask2) 6= (X ant and mask2)) or

((Y and mask2) 6= (Y ant and mask2)) or
((Z and mask2) 6= (Z ant and mask2)))

f pop();
mask1 mask1<<1; mask2 mask2<<1;
g

pcel pop();
while (TRUE) /* Descends octree until the voxel*/
f push(pcel);
if (Z and mask1) pcel pcel+4;
if (Y and mask1) pcel pcel+2;
if (X and mask1) pcel pcel+1;
if ((mask1 and 1) = 0)
f mask1 mask1>>1; mask2 mask2>>1;
if (*pcel = 0) /* if node doesn't exist, creates it */
f if (free bytes<Bytes in Cell)
f free space alloc block(); /* allocates */
free bytes Size of Block; /* one block */
g

*pcel free space; /*creates and descends */
pcel free space;
free space free space+Bytes in Cell;
free bytes=free bytes-Bytes in Cell;
g

else pcel *pcel; /* Otherwise descends only*/
g

else break; /* Leaf reached. Exit loop */
g

X ant X; Y ant Y; Z ant Z;
*pcel input;
g

Figure 2: Octree generation algorithm

region is empty, while a non-null pointer points to another array of eight pointers, further subdividing
the region. This process continues until the leaf node is found, where each non-null pointer points to a
voxel.

The eÆciency of our octree lies into its simplicity. We keep one integer variable \mask1" with a set
bit exactly at the bit position \n", where \n" is the current octree level, which is the total number of
octree levels in the beginning (see Fig. 2). We use this bit to �lter the coordinates bits and to control
the algorithm as in the octree ray traversal algorithm in [Stolte and Caubet, 1995].

The algorithm in Fig. 2 is given in a \C-like" pseudo-code. For the sake of clarity the type castings
are omitted; each assignment is given by a , the logical commands are written with its names (and and
or) instead of symbolically, and the recursive stack operations are denoted by push (to put and element
into the stack) and pop (to remove an element from the stack).

Once initialized, the octree is dynamically created by calling store in octree() for each new produced
voxel. This function receives 4 parameters - the three voxel coordinates (X, Y and Z) and a pointer to
the voxel content (input). In our case, it is the pointer to the surface normal in the voxel.

A signi�cant feature of this algorithm is that it does not require descending all octree levels from the
root. It starts from the cell where the last voxel was stored. In most cases the current voxel will lie in

the same cell or in a nearby relative cell. If it does not lie in the same cell, the algorithm ascends some
levels until the common parent is found. This happens in the �rst part of the algorithm.

To �nd the common parent we use the variable mask2 as shown in the algorithm. This part is
considerably eÆcient because it is translated to very few machine instructions and the variables used
are always in the cache memory. The variable mask2 is used to �lter the most signi�cant bits from the
coordinate values. While the most signi�cant bits of the current voxel coordinates �ltered by mask2 are
not equal to the previous voxel coordinates most signi�cant bits (also �ltered by mask2), the algorithm
goes up one level (pop command), and shifts both mask variables to the left. When both most signi�cant
bits become equal, the common parent is found and the next part of the algorithm will be executed to
descend the octree using the variable mask1. The mask2 variable is shifted left to be able to �lter the
most signi�cant bits of the coordinates for the octree level immediately upper to the current level. The
variable mask1 is shifted left to be able to �lter the correct coordinate bit corresponding to the resulting
octree level when the the common parent is �nally found. The variable mask1 is then used to descend
the octree.

The next part of the algorithm descends the octree from the common parent cell, creating new cells
when it does not yet exist (when *pcell=0).

4 Visualizing the octree using Smart Points

The visualization method used to generate images for this article is based on high-resolution voxel spaces.
Voxels are stored in an octree, thus, allowing quite huge discrete spaces without a very high memory
consumption. Normal vectors are calculated during the voxelization by evaluating the gradient in the
middle of the voxel and then normalizing it. A voxel, located at the leaf octree level, is just a pointer to
a structure containing the three normal vector components, color and other information. Higher octree
level nodes contain only octree children pointers, when they exist, or zero otherwise. All the voxels are
considered as points and rendered using SGI's GL or OpenGL.

This visualization method can allow close-ups of the surface using levels of details. Levels of details
are quite natural to hierarchical voxel models, the models used in this article, because the transition
between the original and re�ned model is indistinguishable.

A major advantage of our method is that no special hardware is necessary to use voxels. In addition, it
allows the mixing of polygonal models (for representing polygonal objects) with voxels at graphics engine
level, thus, eliminating the need to convert polygons to voxels while pro�ting from hardware rendering
for polygons.

The algorithm describing the visualization technique is given in Fig. 3. The variables cell and root
have initially the address of the root of the octree. Variable i is an index varying from 0 to 7 used to
access the current octree element into an eight elements cell. These eight elements identify eight equal
sided neighbour cubes, de�ning a recursive subdivision of a single cube. Each of these elements contains
a pointer to a new cell, when this cell contains any part of the surface, or a null pointer otherwise. The
recursion is controlled by a stack denoted by the instructions push (to introduce a value in the stack)
and a pop operator (to extract a value from the stack). The variable i is assigned a zero value denoting
a left to right tree traversal. Both, cell and i are pushed in the stack to start the recursive traversal. The
recursion is implemented by the do-while loop as shown in the algorithm. The �rst part inside the loop
ascends the tree if i reaches an index greater than 7. Since i is zero in the beginning of the algorithm, the
control passes immediately to the second part which descends the tree. This part is a while loop which
takes place while i�7, indicating that this part also advances to all the elements of the current cell from
left to right. The voxel coordinates X, Y and Z are built, bit by bit, from the i values. Notice that the
previous coordinates bits are saved by shifting them to the left at each new interaction.

If the current cell is a leaf node, then X, Y and Z contain the complete coordinates of the voxel to be
displayed and the current element (cell[i]) contains a pointer to the normal vector of the voxel. These
informations are sent to the graphics card using GL point primitives to display the point with the normal
vector. In practice, these informations are �rst stored in a list and when the list is full all the points
are displayed at once to increase eÆciency. These details are omitted in the algorithm. Notice that after
displaying the voxel, i is incremented to advance to the next element to the right of the current element.

cell = root = octree root cell address;
i=0;
push(cell);
push(i);
do f

/* ascend the octree until i<8 */
while ((i>7) and (cell6=root)) f

pop(i); /* Ascend one*/
pop(cell); /* octree level.*/
X=X>>1; Y=Y>>1; Z=Z>>1;

g
while (i�7) f /* Descend or move right */
aux=cell[i];
X=(X<<1) or (i and 1); /* Calculate */
Y=(Y<<1) or ((i>>1) and 1); /* the voxel */
Z=(Z <<1) or ((i>>2) and 1); /* coord. */
if (aux=Leaf Node) f /* Leaf? */

Display voxel (X,Y,Z) as a point with the
normal vector pointed by \aux";
i=i+1; /* Go right */
X=X>>1; Y=Y>>1; Z=Z>>1;

g
else f /* Not Leaf! */

if (aux 6=0) f /* Empty? */
push(cell); /* Descend1 */
push(i+1); /* level */
cell=aux;
i=0;

g
else f /* Empty ! */

i=i+1; /* Go right */
X=X>>1; Y=Y>>1; Z=Z>>1;

g
g

g
g while (cell6=root)

Figure 3: Visualization Algorithm

Also notice that the coordinate variables must be shifted one bit to the right.
If the cell does not correspond to a leaf node, and if the current element (cell[i]) is zero, the element

does not exist, therefore the algorithm advances to the next element (by incrementing i) and shifts the
coordinates one bit to the right. However, if the current element is not zero, the address of cell and the
next element index (i+1) are saved in the stack, and the algorithm descends the tree by attributing to
cell the address contained in the current element (cell[i]) and making i equal to zero (to restart from the
extreme left side again in the new cell).

Once i reaches the value 8, that happens when all the elements of a cell were visited, the control is
passed again to the main loop that continues if cell 6= root. This time i > 7, and the �rst while loop takes
the control. This loop extracts from the stack: (1) the indexes i of the current elements and (2) the cell
addresses corresponding to all those cells that were already completely visited. At each interaction this
loop also shifts the coordinates one bit to the right. Notice that the loop either stops when a cell not yet
completely visited is found (denoted by i values less or equal to 7) or when the root cell is found. If the
root cell is found and i is greater than 7, all cells in the tree were visited and the algorithm �nishes.

At the current time, this method allows interactive visualization for easy surface inspection. The
images produced in this article are snapshots from the visualization method viewing window. Image
quality is comparable to that of ray-casting.

5 Voxelization

To create the octree, the objects need �rst to be converted to voxels. This process is called voxelization.
There are voxelization algorithms for various kinds of objects: polygons, parametric surfaces and implicit
surfaces.

These objects can be integrated with remote sense depth maps in the same voxel volume. The depth
maps also have to be converted to voxels. This conversion, however, is straightforward.

Depth maps are normally composed by two �les. The two �les represent a matrix of pixels of a
satellite image. One of the �les is the image itself that is normally used as a texture to be applied in the
model. The other �le is another matrix of pixels of the same resolution as the previous �le. However,
instead of representing the color/intensity of the pixel it contains the height this pixel has in relationship
to the ground. In this way, each pixel is really a voxel, where the X and Y coordinates are given by the
image's lines and columns and the Z coordinate is given by the pixel indexed by X and Y.

In this sense, there is no conversion, since depth maps are already voxels, just represented in a di�erent
way. However, diÆculties exist. The Z coordinates of the depth map can change very quickly from one
pixel to another. If just only one voxel would be generated for each map's pixel, holes could show up
in the voxel model. For this reason, for each pixel in the map, all the eight neighbour pixels must be
analysed. If the neighbours' heights are never more than one unit di�erent than the pixel's height, then
only one voxel is generated for that pixel. Otherwise, new voxels have to be piled under and/or over the
original pixel to �ll the height gaps.

The normal vectors have to be calculated by central di�erence as explained in section 2. The voxel
can also store the texture image given by the �rst depth map �le.

6 Conclusion

This article has shown several techniques to allow visualizing remote sense depth maps using voxels. The
visualization technique can be also used for visualizing other kinds of objects. The objects have to be
�rst converted to voxels to be visualized. It is shown that the conversion from depth maps to voxels is
straightforward. The texture �le from the depth map can be directly stored into the voxels. Therefore,
no special care is necessary on how the texture mapping will be handled. The approach presented here is
highly appropriated for visualizing and manipulating depth maps, since they are basically surfaces. The
underground information can be stored in the octree using no extra memory.

An intrinsic advantage of this approach is that objects can be manipulated or edited as in a drawing
program on a 2D screen. The volume is a 3D screen that behaves exactly as the 2D counterpart.

Hence, voxels are a much more natural way to represent depth maps. At the same time high quality
visualization is achieved at interactive speeds. LCD glasses can be easily integrated in the system for
virtual reality applications.

References

[Cohen and Kaufman, 1990] D. Cohen and A. Kaufman. 3D Scan-Conversion Algorithms for Linear and
Quadratic Objects. Volume Visualization, pages 280{301, 1990.

[Du�, 1992] Tom Du�. Interval Arithmetic and Recursive Subdivision for Implicit Functions and Con-
structive Solid Geometry. Computer Graphics, 26(2):131{138, July 1992.

[Endl and Sommer, 1994] Robert Endl and Manfred Sommer. Classi�cation of Ray-Generators in Uni-
form Subdivisions and Octrees for Ray Tracing. Computer Graphics forum, 13(1):3{19, March 1994.

[Fujimoto et al., 1986] Akira Fujimoto, Takayaki Tanaka, and Kansei Iwata. ARTS: Accelerated Ray
Tracing System. IEEE - CGA, 6(4):16{26, 1986.

[Glassner, 1984] Andrew S. Glassner. Space Subdivision for Fast Ray Tracing. IEEE - CGA, 10(4):15{22,
1984.

[Jevans and Wyvill, 1989] David Jevans and Brian Wyvill. Adaptative Voxel Subdivision for Ray Trac-
ing. In Proceedings of Graphics Interface '89, pages 164{172, Toronto, Ontario, June 1989. Canadian
Information Processing Society.

[Kalra and Barr, 1989] Devendra Kalra and Alan Barr. Guaranteed Ray Intersections with Implicit
Surfaces. Computer Graphics, 23(3):297{306, July 1989.

[Kaufman et al., 1993] Arie Kaufman, Daniel Cohen, and Rony Yagel. Volume Graphics. IEEE Com-
puter, 26(7):51{64, July 1993.

[Kaufman, 1987a] A. Kaufman. An Algorithm for 3D Scan-Conversion of Polygons. In Eurographics'87,
pages 197{208, Amsterdam, August 1987. North Holand.

[Kaufman, 1987b] Arie Kaufman. EÆcient Algorithms for 3D Scan-Conversion of Parametric Curves,
Surfaces, and Volumes. Computer Graphics, 21(4):171{179, July 1987.

[Snyder and Barr, 1987] John Snyder and Alan Barr. Ray Tracing Complex Models containing Surface
Tesselations. Computer Graphics, 21(4):119{128, 1987.

[Stolte and Caubet, 1995] Nilo Stolte and Ren�e Caubet. Discrete Ray-Tracing of Huge Voxel Spaces. In
Eurographics 95, pages 383{394, Maastricht, August 1995. Blackwell.

[Stolte and Caubet, 1997] Nilo Stolte and Ren�e Caubet. Comparison between di�erent Rasterization
Methods for Implicit Surfaces. In Rae Earnshaw, John A. Vince and How Jones, editor, Visualization
and Modeling, chapter 10, pages 191{201. Academic Press, April 1997. ISBN: 0122277384.

[Taubin, 1994] Gabriel Taubin. Rasterizing Algebraic Curves and Surfaces. IEEE - CGA, pages 14{23,
March 1994.

[Yagel et al., 1992] Roni Yagel, Daniel Cohen, and Arie Kaufman. Discrete Ray Tracing. IEEE - CGA,
12(5):19{28, 1992.

