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Abstract

Voxelization is the transformation of geometric surfaces into voxels. Up to date this process has been
done, essentially using incremental algorithms. Incremental algorithms have the reputation of being
very eÆcient but they lack an important property: robustness. The voxelized representation should
envelop its continuous model. However, without robust methods this cannot be guaranteed.

This technical report presents several techniques to voxelize di�erent kinds of surfaces guaranteeing
robustness.
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1 Introduction

In Discrete Geometry [5, 18, 20, 9] a 3D continuous volume is represented by a 3D grid of voxels.
This representation is very convenient for a series of applications such as mixing synthetic objects
into medical imagery (MRI, CT, etc.). Integer arithmetic is often suÆcient to treat most of the
problems using this representation. This has several advantages: better precision, circuit simplicity
and speed. Nevertheless, many apparently simple problems in this domain can be very diÆcult to
solve and have been the subject of many important research works. One of these problems is the
conversion of a synthetic object into the voxel format, often called voxelization. Voxelization of
lines and planes is relatively simple using scanline incremental techniques [13, 23]. Bezier splines
surfaces' voxelization have been also accomplished using incremental techniques [14]. Unfortunately,
incremental methods do not guarantee correctness. Since precision is one of the main motivations of
Discrete Geometry, voxelization based on incremental techniques does not seem to be an adequate
solution for the voxelization problem.

Incremental algorithms have the reputation of being very eÆcient because additions are generally
much faster than the multiplication and division. In addition, it is a general belief that integer opera-
tions are faster than 
oating point operations. In principle this is true since 
oating point operations
take 4 steps to be executed (allignment, execution, re-normalization and rounding) while integer opera-
tions take only one step (execution). However, this scenario has been signi�cantly changing in modern
machines, since computer chip manufacturers have been supplying processors with special hardware
acceleration for 
oating point arithmetic. Parallel techniques, such as Pipelines and redundant nu-
meration systems (i.e.\carry-save"), and other hardware improvements are allowing 
oating-point
operations to be closer to the integer operation performance as never before. This current reality in
the industry and its future trends force us to reconsider the axiom which has been the inspiration of
incremental techniques.



Therefore the only real advantage of using incremental techniques would be of circuit simplicity,
which might be important to special-purpose machines, but not for general-purpose machines. Special-
purpose machines are not likely to be as popular as general-purpose machines. Hence, general-purpose
machines are more likely to be supported by the industry in the near future.

However, the problem of representing continuous models inside the machine still remains. Integer
representation is still ideal because of its accuracy and simplicity. Consequently, discrete models seem
ideal to describe continuous models in the machine. Nevertheless, all the well-founded axioms and
theorems valid for real numbers are lost in the discrete model. This indicates that the continuous
model is still important. Discrete models can materialize analytical surfaces much more accurately
than using polygons. In fact, discrete models could be thought of as envelopes to the continuous
surfaces, which could be re�ned at will. In this way, to generate this representation, the calculation
accuracy should be preserved; otherwise, the representation would not be correct.

This technical report shows several ways to voxelize surfaces guaranteeing correctness, that is, that
no part of the continuous surface will ever be missed by the discrete model. A basic tool introduced
here is Interval Arithmetic. Interval Arithmetic has been simultaneously but independently introduced
to Computer Graphics by Snyder and Du� [21, 6]. Although many powerful properties have been
presented, interval arithmetic still has not been considered in many Computer Graphics problems.
Intervals are particularly useful in determining discrete models because any tridimensional box in the
space can be formally represented by 3 intervals, each one corresponding to one of the coordinates of
the space. In addition, if the continuous model is de�ned by an implicit surface, interval arithmetic
can be used to determine if the tridimensional box can contain, or not, a part of the continuous model.
This calculation is done much more eÆciently than traditionally, where intersections calculation would
be required. In addition, the result is guaranteed to be correct. However, interval arithmetic is very
conservative, which means that large tridimensional boxes also induce large overestimations. Recursive
space subdivision is an elegant way to overcome this problem, since at each step the volumes shrink
to one eight of the original volume, thus inducing a very fast convergence to the surface. Therefore,
the voxelization is easily accomplished by applying this recursive subdivision until the desired grid
resolution is reached. Nonetheless, this voxelization procedure does not require a uniform resolution.
In addition, at any level the subdivision has stopped, it can be automatically continued from that
point. This constitutes one of the great advantages of this method over previous methods.

Implicit surfaces are not only a very powerful modeling tool but can be seen as a general work
tool in the discrete context if associated with interval arithmetics. Voxels can be easily located inside,
outside or at the surface using interval arithmetics. In this way our voxelization method has yet
another very important advantage: it is not only able to locate the voxels on the surface, but also to
detect its interior voxels.

Frey and Borouchaki [8] simply evaluate the function on eight corners of every voxel. If there
is no sign variation in the eight calculated values, the voxel is considered empty; otherwise it is
considered full. This method is not only slow (running time increases by a factor of 8, every time
three-dimensional resolution is doubled), but also incorrect since it can miss voxels having no corner
intersection yet containing the surface or part of it. This method is suitable neither for high resolution
due to high running times, nor good quality voxelization since it does not always envelop the surface.

It is diÆcult for manifold implicit surfaces to be consistently voxelized without subdividing the
space. We have presented three existing methods that can subdivide manifold implicit surfaces very
elegantly by recursively subdividing the space [24]. We have generalized two of these subdivision
methods to voxelize manifold implicit surfaces. We have shown that the voxelization method using
interval arithmetics was the most eÆcient [24]. However, many open questions have remained includ-
ing: how to apply this voxelization method to parametric surfaces and how to further accelerate the
method. In this technical report we show some solutions to these problems.

A high-resolution voxel space is a very promising solution for displaying curved surfaces and other
complex objects [22, 24, 15]. Voxels can be approximated by a point when they are suÆciently small
and seen from a reasonable distance, thus being displayed at most by one pixel. The simplicity and



the quality gained are the main advantages of this concept. Images rendered this way with standard
hardwired Z-bu�er, such as those shown in this report, have ray-casting quality. In addition, voxels
are very widely used in accelerating ray-tracing and radiosity. In this domain, the need of voxelization
algorithms that can guarantee an exact envelope of the surface is a sine qua non condition. Fine
voxelizations in these cases, when associated with proper hierarchies [11, 26], mean faster rendering
time since the �ne subdivision takes part of the intersection calculation burden into a preprocessing
stage.

2 Implicit Surfaces Voxelization Method

The voxelization is done by subdividing the space recursively in an octree fashion as in [12]. Each
subdivided octant is represented in our case by three intervals, one for each variable (x,y,z), where the
lower and higher bounds correspond to the octant bounding coordinates.

Du� and Snyder [6, 21] have simultaneously yet independently introduced interval arithmetic to
solve Computer Graphics problems. Du� concentrated in Ray Tracing algebraic implicit functions and
Snyder, in more general problems such as silhouette edge detection, surface polygonization, minimum
distance determination, etc.

Interval arithmetic guarantees that the exact result of any arithmetic operation is between two
values, called interval bounds. Any real number is represented by two interval bounds. For example,
the coordinates, X, Y and Z are represented in interval arithmetic as:

X = [x;X]

Y = [y;Y]

Z = [z;Z]

These interval bounds in our case are the coordinates of the octant's boundaries. Substituting in
the implicit function equation each regular coordinate by the correspondent interval and each regular
operation by the respective interval operation, produces an interval version of the function, which
Snyder [21] calls an inclusion function. We can verify if the surface does not pass through the octant
by simply testing if the resulting interval does not include zero, that is, when the inclusion function
resulting interval does not include a solution for the regular function F (x; y; z) = 0. Then if the
resulting interval does not include zero, the function certainly does not have a zero in the octant;
therefore, the surface does not pass through the octant.

The recursive subdivision method, which de�nes our voxelization, applies the algorithm in Fig. 1
in a recursive fashion.�

If zero is contained into the interval calculated by applying the
inclusion function to the octant

Then subdivide octant
Else reject octant

Figure 1: Voxelization using the inclusion function

The interval arithmetic operators are:

X+Y = [x+ y;X+ Y]



X�Y = [x� Y;X� y]

X � Y = [min(xy; xY;Xy;XY);max(xy; xY;Xy;XY)]

X = Y = [x=Y;X=y] if 0 62 [y;Y]

These operators are not enough for the functions used in practice. To include any algebraic
expression we need:

Xn =

8<
:

[xn;Xn] n odd or x >= 0
[Xn; xn] n even and X <= 0
[0;max(�x;X)n] n even and 0 2 [x;X]

To include gaussians, which are useful as blending functions in \blobby" models [16, 2, 12, 3] we
have:

e�X = [e�X; e�x]

Surfaces rotations are linear transformations accomplished by multiplying a 3�3 matrix of con-
stants by the corresponding intervals using matrix multiplication rules. It is important to note that the
order of the interval bounds resulting from a multiplication between a constant and interval depends
on the sign of the constant. That is, if a is a constant:

X � a =

�
[x � a;X � a] a � 0
[X � a; x � a] a < 0

Any other function can be similarly converted to interval arithmetic by breaking the function into
their monotonic intervals [6].

Since we subdivide object space and not the viewing volume, the subdivision is independent of
view point and does not need to be repeated each time the observer changes position or orientation.
Our method is also independent from the rendering algorithm.

In opposition to all previous methods, the surfaces are voxelized at a high discrete resolution, where
each voxel has its color and a normal vector calculated through the gradient of the function in the
middle of the voxel. The normal vector is sensitive to singular points but not the voxelization. This
allows us to mix in the same discrete space objects modeled in other ways. To avoid the high memory
consumption, we store the voxels into an octree [25, 28, 26, 27, 24]. This allows us to achieve high
resolutions with low memory consumption, since the majority of the scenes are almost empty. Once the
surface is voxelized we need neither the surface's equation nor the conversion the voxels into polygons
to visualize it. We have used two di�erent rendering algorithms: a fast high resolution discrete Ray
Tracing [27, 26] and a hardwired Z-Bu�er. In the Z-Bu�er approach each voxel is displayed as a 3D
point with the voxel normal and color. In this way the scene can be interactively visualized with
high quality shading. Other data can be stored into the voxels as shadows information. Shadows can
be precalculated casting discrete rays to the light sources. Radiosity data can also be precalculated
and stored into the voxels. All these advantages have already been stressed in [33]. The di�erence
in our approach is that we use high resolution to increase image quality and we are able to visualize
the scene in near to real time. Notice that we do not need neither special architectures, nor parallel
approach. We use conventional machines with hardwired Z-Bu�er capable of showing 3D points with
normals. Even though we still cannot allow near close-ups, this can be solved by using lazy evaluation
and storing the extra space in virtual memory. Smooth continuity in the movement can be guaranteed
using an eÆcient cache system. However, a powerful machine is advisable for voxelizing pieces of the
surface in real time.



3 Implicit Sweeps

De�ning complex scenes with simple expressions is an ultimate goal in Modeling and Computer Graph-
ics. Fractals have fascinated everyone by their beauty and simplicity. Unfortunately, they are normally
very ineÆcient to be generated, since they require a large number of recursive iterations to be evalu-
ated. EÆcient evaluation is also a high priority in Modeling and Computer Graphics, since the model
rendering times are almost always directly connected with the evaluation eÆciency.

De�ning surfaces procedurally or with functions allows compact representation of the model while
giving a precise de�nition of the continuous surface of the modeled objects. On the other hand, these
abstract objects are diÆcult to be materialized and visualized. Most of the time approximations
of these surfaces are used for visualization purposes only. Parametric surfaces are very popular in
this sense since they can be easily approximated by polygons, and polygons are a popular way to
approximate objects in current graphics engines. However, parametric surfaces lack many interesting
properties normally found only in implicit surfaces, namely: capability to know if a point in the
space is in, out or on the surface; a notion of \distance" between a point and a surface by only
evaluating the implicit function at the point; and blending di�erent surfaces for easy connectivity.
Although implicit surfaces are not naturally convertible to polygons, they can be easily converted to
voxels. Many robust conversion methods [12, 32, 24] exist. Using Interval Arithmetic, for example,
is an eÆcient and general way [24, 22] to accomplish a robust conversion. Unlike polygons, which
do not properly represent the original surface, voxels obtained by these methods completely envelop
the surface. In this manner, voxels represent curved surfaces in a much better way than polygons
can. Thus, implicit surfaces are a very attractive way to model objects and voxels are very appealing
to materialize these models as well as to visualize them. During their conversion to voxels a serious
concern is the evaluation time for the surface equation. This function is evaluated for every voxel
containing the surface, and for all parent cubes in the recursive subdivision of the space. Particularly
when several copies of the same object, or slightly modi�ed versions of the same object are desired, all
their equations are normally evaluated at every voxel or parent cube. A classic way to proceed is to
multiply all the surfaces equations among them [31]; thus, if any of this expressions is zero the whole
function is also zero. An important problem in this approach is that the exact expressions which
are zero in a certain region are unknown, which potentially forces the evaluation of each expression.
Moreover in�nite replications become impractical. Thus, an automatic way to detect which surface
corresponds to each region is highly desirable.

We propose in this section a high level tool to solve this problem, called implicit sweep. The
technique is based in a function mapping real values to integers, which are considered as a replication
factor. The simplest form of replication is attaching the replication factor to translations. In this way
the same surface can be in�nitely repeated. Even in this simplest form the technique already has a
number of applications. One of these applications is representing surfaces implicitly where previously
they could only be de�ned parametrically.

3.1 Constructing and applying the replication factor

The replication factor is an integer which is a function of one or more real coordinates, that is, it is a
function:

f(x1; x2; � � � ; xn): R
n!N

For simplicity, let the replication factor i be a function of the z coordinate, f(z): R!N , that is:

i = f(z)

Now, let S be a surface to be replicated in�nitely along the Z axis separated by a distance b 2 R.
Then a replication factor can be given by:



i = ( int )
(z � b

2)

b
(1)

When z is positive b

2 is added to z to shift the whole surface to the integer boundary; otherwise

only half of S is replicated. When z is negative b

2 must be subtracted to obtain the same e�ect.
Let S be a torus de�ned implicitly in cylindrical coordinates by the function:

(r �R)2 + z2 � a2 = 0 (2)

where a is the small radius and R is the large radius. Applying the replication factor to S would
give:

(r �R)2 + (z � (i � b))2 � a2 = 0 (3)

In this example we demonstrate the simplicity and the power of implicit sweeps. The torus is
automatically replicated (translated) by steps given by b up to the in�nity, without any extra cost but
the computation of i and z � (i � b). These computations are quite negligible in comparison with the
obtained e�ect. Much more complex scenes can be derived by applying i in more involved replication
functions. This can be seen as a kind of fractal without the normal intrinsic cost in fractal generation.

3.2 Calculating the replication factor in Interval Arithmetic

Interval Arithmetic is a key tool for converting implicit surfaces into voxels as seen in [24, 22, 29].
However, even the simple replication function shown in equation 1 has a condition (expressed by

�) which is diÆcult to control in interval arithmetic. Potentially, the interval can include more than
one instance of the object. The simplest way to solve this problem is evaluating all the instances in
each interval I . If one of these evaluations produces an interval with di�erent signs in its bounds,
I is accepted for further subdivision. Otherwise, I is rejected, since no part of any surface passes
through the region delimited by I . Notice that further the subdivision advances less surfaces can be
potentially evaluated. Most of the evaluations will include only one surface, thus saving an important
amount of computing time.

Given an interval [z0; z1] to be evaluated in the inclusion function (the function in interval arith-
metic [21]) of the torus given in equation 3, we �rst calculate two replication factors, one for each
interval bound:

i0 = ( int )
(z0 �

b
2)

b

i1 = ( int )
(z1 �

b
2)

b

The number of surfaces to be potentially evaluated in this interval is i1 � i0 + 1. Therefore, a
simple loop starting in i0, ending in i1 with a unit increment and containing the evaluation of the
inclusion function of equation 3, will be enough to handle all the surface replications inside an interval
[z0; z1]. Notice that the �rst part of equation 3 can be calculated outside the loop, since it does not
depend on z coordinates.

Fig. 2 shows a voxelized model containing a replicated torus using this technique.



Figure 2: Replication example of a torus

4 Robust Voxelization of Parametric Surfaces

4.1 Spherical and Cylindrical Coordinates

Spherical coordinates are an extremely powerful tool for modeling objects which have a radial variation
about an origin. It has many applications in CAD, art, entertainment, and related areas. Cylindrical
coordinates, which can be seen as a special case of spherical coordinates, have special utility in
industrial design, where many industrial products have cylindrical components.

This report describes a new robust technique for voxelizing spherical (or cylindrical) coordinates
implicit functions, often de�ned as spherical (or cylindrical) coordinates parametric functions. This
technique can speci�cally support CAD, ray-tracing, direct voxel visualization, or simulation. A
very useful application of these techniques involves blending of spherical or cylindrical surfaces with
rectangular implicit surfaces in the same voxel space, thus pro�ting from convenient modeling using
spherical/cylindrical coordinates and easy blending with other implicit forms.

Spherical parametric functions, and every parametric function de�ned from R2!R3, are suitable
for generating polygon models, but not for conversion to voxels. Parametric functions, based on
polynomials, can be converted to voxels using incremental techniques (e.g. Bezier surfaces [14]) - but,
due to the machine �nite precision, incremental techniques are not robust. In addition, they can be
of very little help in transcendental functions, as for example, in most spherical parametric surfaces.
Although parametric surfaces are sometimes �rst converted to polygons and then converted to voxels
[26], this solution is inappropriate, since the polygonal model is not an exact representation of the
surface. Polygonal models are very convenient for 
at surfaces but not for curved surfaces.

This section presents a novel method for voxelizing spherical/cylindrical implicit surfaces, often
de�ned by parametric equations, simultaneously o�ering robustness and low complexity. Robustness
evolves from the use of interval arithmetic, while the low complexity results from recursive subdivision
of the space associated with interval arithmetic (see Section 2).

Converting spherical parametric functions to implicit functions would be very helpful for voxeliza-
tion, since the algorithms cited above could be used for a high quality voxelization. However, the
conversion can be very cumbersome, involving several algebraic manipulations. Rational parametric
surfaces can be automatically implicitized [7, 10], and while several advances in recent years have sig-
ni�cantly reduced conversion times, it still remains a time consuming process. Spherical parametric



surfaces, which often involve transcendental functions, are particularly diÆcult to cope with.
The method proposed in this section spares the use of this automatic conversion by accepting

the implicit function directly in a spherical/cylindrical coordinates format (see Section 4.1.1). The
voxelization is done by subdividing the space in a recursive way, producing eight equal sized cubes
at each interaction. Each of these cubes represents three intervals in interval arithmetic, which are
converted to spherical intervals and then applied to the implicit spherical inclusion function for a
containment test. This algorithm is shown to display running times asymptotically approaching an
increasing factor of 4 every time resolution is doubled in every coordinate axis. This provides a great
advantage over algorithms cited previously, which exhibit running times increasing by a factor of 8,
every time resolution is doubled in every coordinate axis.

This method has additional advantages normally found only in implicit representation: a simpler
and stand-alone equation, with no intermediate variables; only one equation instead of three, and the
capability of being blended with other implicit surfaces.

4.1.1 Spherical/Cylindrical Parametric to Implicit

The problem of voxelizing spherical/cylindrical parametric functions can be bypassed by �rst trans-
forming them to implicit functions and then voxelizing the corresponding implicit function. This
requires transforming a function f :R2!R3 to a function g :R3!R. This conversion is not always
easy and several solutions might be possible, if one exists. Our goal is to simplify this task and to sug-
gest that de�ning the function directly into the implicit form might be much simpler. Unfortunately,
a general method to convert all functions does not exist and a case-by-case analysis is sometimes
necessary. However, in many cases, when spherical/cylindrical coordinates are used, the conversion is
easy and often produces a simpli�cation of the function expression. Here we give some examples:

A torus is a surface that can be parametrically de�ned as follows:

x = (a+ b � cos �) � cos �

y = b � sin �

z = (a+ b � cos �) � sin �

One simple way to express it in the implicit form is using cylindrical coordinates, remembering
the circle implicit equation:

(r � a)2 + y2 � b2 = 0 (4)

Equation 4 de�nes a circle with radius b translated to the point (a,0). Since the horizontal axis is
r, a rotating axis about y, it describes the surface produced by the rotation of the translated circle,
generating a torus. Equation 4 is much simpler than its parametric counterpart and it is very easily
obtained.

Consider the following function in the parametric form using spherical coordinates, which de�nes
the radius by a function R=R(�,�) as follows (see Fig. 11-a, 11-b and 11-e ):

R = sin(n � �) � sin(m � �) (5)

x = R � cos � � cos � (6)

y = R � sin � (7)

z = R � cos � � sin � (8)



In this case the transformation is trivial, since only Equation 5 is necessary. As we can see
Equations 6 to 8 serve only to convert from spherical to rectangular coordinates, which is no longer
necessary when working directly in spherical coordinates. Then:

R = R(�; �)! R(�; �) �R = 0

Which in our example gives the following implicit function:

sin(n � �) � sin(m � �)� R = 0

The obtained implicit functions are not only very simple to de�ne but also have interesting proper-
ties that the parametric form did not have - i.e., this new form can be blended with other surfaces in
either spherical, cylindrical or rectangular coordinates. The reason is very simple: implicit functions
always return a scalar real value giving an idea of distance, regardless of the kind of coordinates it
uses.

4.1.2 Converting to Spherical Intervals

The intervals generated by the recursive subdivision described in Section 2 are strictly rectangular.
This is consistent with the voxelization process since voxels are essentially rectangular intervals. How-
ever, the equations used in this section are in spherical coordinates. Instead of converting the implicit
function to rectangular coordinates, which can be a very cumbersome process, the rectangular inter-
vals are converted to spherical intervals. Afterwards, they are applied to the inclusion function to
see if the 3D interval contains a part of the surface, as explained in the previous section. This ap-
proach greatly simpli�es the process and allows, at the same time, having rectangular coordinates and
spherical coordinates implicit functions in the same space. Since the functions always return a scalar
interval, independent of the kind of coordinates system, implicit surfaces can be blended together
through a blending function.

Although simple, the conversion should be subdivided case-by-case to simplify calculations. Rect-
angular X, Y and Z intervals should be converted to spherical R (R=[r0, r1]), � (�=[�0,�1]) and �
(�=[�0,�1]) intervals. Interval R bounds correspond respectively to the minimal and maximal radius
value in the 3D region de�ned by the three rectangular intervals. The radius value is the distance
between a certain point and the surface origin, as in the very de�nition of spherical coordinates. The
maximal and minimal values are the distances between the surface origin and the points of the 3D
region de�ned by the three rectangular intervals which are, respectively, the nearest and the farthest
to this origin.

The other two intervals (� and �) correspond to the angles � and � in spherical coordinates. By
de�nition, � is the angle between the radius and the X axis, and � is the angle between the radius
and XZ plane. However, � and � each refers to two radii, one for each angle bound, which are not
the bounds of R. Perception of these angles bounds on the 3D cubic region (de�ned by X, Y and
Z) is very subtle and complex. To be able to calculate them, we subdivide the problem into several
di�erent cases.

Obtaining � bounds

To �nd out the � bounds we have de�ned 9 possible cases (see Fig. 3). These cases cover the
whole angular domain ([0, 2�]). In each of these di�erent cases there is a di�erent solution for �nding
� bounds. Each square in Fig. 3 indicates a square de�ned by the intervals X and Z, that is, a
projection on the XZ plane of the 3D region de�ned by X, Y and Z. The numbers in the squares
identify the di�erent cases.

Due to space limitations, only one case, case 0, will be discussed. Nevertheless, case 4 is an
exception and has no solution, since it would result in an [0, 2�] interval, that is, the whole domain.
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Figure 3: Nine cases for determining � bounds

Because of this, every cube in this case is trivially accepted, except at the last level (the voxel level)
where the voxel might be rejected, that is, it is assumed that the surface does not pass through it.

x

z

θ1

θ0

x0 x1
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Figure 4: Determining � bounds for case 0

Figure 4 shows how to obtain angles �0 and �1 (� bounds) in case 0. In this case:

�0 = atan(z0=x1)

�1 = atan(z1=x0)

In the other cases �0 and �1 are calculated in a similar fashion. Angles are always de�ned in such a
way that cubes are totally enclosed by them as indicated in Fig. 4. This is done to de�ne a spherical
interval which contains the cubic one.

Obtaining � bounds

To cover the whole spherical space, �0 and �1 need to be de�ned in only half of the angular domain,
that is, [-�2 ,

�

2 ], since �0 and �1 are already de�ned in [0, 2�] domain. Since case 4 is eliminated from



the analysis, as discussed in the previous section, only three di�erent cases are necessary to fully de�ne
� bounds.

r

y

a

b

c

r0 r1

y0

y1

Figure 5: Three cases for determining � bounds

The three cases are indicated in Fig. 5. Axis r in Fig. 5 is a rotating axis over XZ plane. Suppose
that the cube being considered is case 0 (Fig. 3 and 4) and case a (Fig. 5), �0 and �1 are calculated
the in following way:

r0 =
p
x02 + z02

r1 =
p
x12 + z12

�0 = atan(y0=r1)

�1 = atan(y1=r0)

4.1.3 Results

n=9 m=18 n=9, m=10 n=5, m=6 n=3, m=4

Res. Time Mem. Time Mem. Time Mem. Time Mem.

10243 653" 149.363 258" 113.738 307" 70.472 208" 48.621
5123 160" 39.285 120" 30.777 74" 20.363 50" 14.980
2563 35" 12.261 28" 10.308 18" 7.886 12" 6.597
1283 6" 5.738 5" 5.324 3" 4.816 2" 4.511

Figure 6: Rasterization times for sin(n��)�sin(m��)�R=0

The complexity of the algorithm is linear (O(N)) for the voxels which must be changed, since the
octree is descended only once, and at each last node there is a constant amount of computation. This
is true because all eight elements in the same cell are accessed linearly. Fig. 6 shows some voxelization
times for the function sin(n ��) � sin(m ��)�R =0 for di�erent values of n and m and di�erent 3D
resolutions. Complexity increases as the resolution grows, but running time asymptotically approaches



an increasing factor of 4 every time resolution doubles in every coordinate axis. At higher resolutions
this tendency is even more clear (for n=3 and m=4, at 20483 resolution, estimated time is 13'52",
that is 3'28"�4, and real time was 13'53"). On the other hand, voxelization methods sampling all
voxels [8] have a labored time increase factor of 8; each time resolution is doubled in each coordinate
axis. For a 5123 resolution our proposed algorithm can be roughly evaluated as being 512 times faster.
This dramatic speed-up comes from the recursive space partition and from the fact that large empty
regions can be easily eliminated using interval arithmetic. The voxelization in a given resolution can
be seen as the set of voxels where empty regions could not be eliminated using interval arithmetic.

The image in Fig. 11-c shows a gear generated using cylindrical coordinates. Gear teeth were
generated by the implicit function r�(0:8+0:05 �sin(32 ��))= 0 and voxelized by the method described
in this report. All other parts were voxelized using constraints implementing CSG operations of
cylinders and planes. The voxelization time for this model at 5123 resolution was 12 seconds.

The image in Fig. 11-d illustrates another example of practical application of our voxelization
method using cylindrical coordinates. The contour of the non-cylindrical parts is given by the implicit
function r�(1:2+0:05 �sin(3 hspace1pt��))=0, that is, basically the same equation used for the gear.
The voxelization time for this model at 5123 resolution was 14 seconds.

All voxelizations were generated on a Challenger SGI workstation using a single 200MHz R10000
processor. Memory occupation in Fig. 6 is given in MBytes. All images were generated on the same
machine using our interactive voxel visualization software. This software uses an octree to store the
voxels and GL primitives to display each voxel as a 3D point.

Figure 7: De Casteljeau Subdivision

4.2 . Bezier Patches

Bezier patches voxelization have been accomplished using incremental techniques [14]. As pointed out
before, incremental methods do not guarantee correctness. Unfortunately, the convertion of Bezier
patches to the implicit form is very involved. In addition, Bezier patches are not de�ned in the
whole parametric domain as in the spheric or cylindrical coordinates parametric surfaces seen before
(section 4.1). Generally they are considered only in the interval [0 1] for both parametric variables,
while the rest of the parametric domain is just ignored. This fact imposes very strict conditions for
transforming it to the implicit form, leaving it even more diÆcult if ever possible. However, if it is
possible, it would be a very powerful modeling tool, since this kind of surface would inherit all implicit
surfaces properties. All those diÆculties just mentioned have been forbidding this conversion.



Another way to treat this problem is generalizing De Casteljeau [4] algorithm to 3D. This algo-
rithm implements a fast subdivision of the Convex Hull of Bezier patches. Bezier patches are always
guaranteed to be contained inside the Convex Hull. Fig. 7 shows the De Casteljeau for a Bezier
curve. The outside Convex Hull is subdivided in two smaller ones, one on the right and another on
the left. The common point between both is a point over the surface. All the new points are obtained
by calculating the middle points of the line segments indicated in Fig. 7.

A simple way to understand our 3D subdivision is assuming that the 16 Bezier patch control points
are in a 4�4 matrix. The subdivision method applies De Casteljeau algorithm for each line of this
matrix producing a 7�4 matrix. Then, De Casteljeau algorithm is applied to each column of the later
matrix, producing a 7�7 matrix containing the the four sub-patches. The same algorithm is then
applied recursively to each one of the four sub-patches. The process is illustrated in Fig. 8. Notice
that the points a, b, c and d in the �gure never change. The same happens to all the other points
that touch the surface, namely the points in the following �nal 7�7 matrix positions (3,0), (0,3),
(3,3), (6,3) and (3,6). These points are very critical for guaranteeing the robustness of the approach
and must be exact. This is an important restriction. The best way to solve this problem is using
multiple precision calculation. This is not diÆcult to implement since the calculations involved in the
subdivisions are only additions and shifts.

1

2

a b

c d

a b

c d

a b

c d
1    2D subdivision on

all lines

2    2D subdivision on
all columns

Figure 8: 3D subdivision using 2D De Casteljeau algorithm (Fig. 7)

The voxelization algorithm would apply this subdivision algorithm until a certain condition is met.
This condition should be when the patch is so 
at that further subdivisions would not contribute to
eliminate none of the existing voxels for that patch. One solution would be when points a, b, c and
d are in the same voxel. This was tried but the solution proved to be too conservative, requiring
too many subdivisions. Therefore an eÆcient stop condition is still required for an eÆcient robust
voxelization using this technique.

5 EÆcient Parallel Voxelization using Recursive Subdivision

The transformation of geometric surfaces into voxels is a very important research topic for Volume
Visualization. It allows mixing geometric with volumetric data into the same volume. Implicit surfaces,
in particular, are usually transformed into voxels before being transformed to polygons. Voxels are a
natural way to represent implicit surfaces in the same way polygons are a natural way to represent



parametric surfaces. For parametric surfaces the parametric space can be subdivided recursively to
produce polygons, while for implicit surfaces the three-dimensional space can be subdivided to produce
voxels. Space recursive subdivision is an elegant way to produce eÆcient and robust voxelization.
Other important advantages we can cite are: simplicity to deal with manifold objects, no need for
clipping, low algorithm complexity and facility to classify regions inside and outside the surface.
Octrees are natural data structures to store volumes where the interior is homogeneous or nonexistent,
and to avoid representing the voxels outside a surface.

Although octrees are not natural candidates for parallelization, good algorithms exist addressing
this subject. One example that particularly �ts our problem of surface voxelization is [1]. This
algorithm exhibits fairly good results with up to 4 processors. For more than 4 processors the results
are not as satisfying. As in [1], we use a shared-memory machine and get approximately the same
behavior, but with better results.

Unfortunately, the greatest limitation of the algorithm in [1] is the assumption that the containment
of a surface into an octant can be known at any moment. For certain subdivision algorithms [12, 6,
32, 24] this assumption is not correct. With these subdivisions we can determine only if the surface is
not contained in an octant. When the subdivision reaches the leaf level, there is no guarantee that the
voxel really contains a part of the surface. Nevertheless, the probability of the voxel belonging to the
surface grows quickly at each further subdivision, and at the last level we assume that this probability
is very high. The voxelization obtained is guaranteed to always envelop the surface. No voxels of the
surface will ever be missed.

These subdivision algorithms require a totally di�erent approach for parallelization. First, the
octree must be separated from the subdivision. The subdivision must continue until the last level,
and only then, the voxel can be stored into the octree. This implies that the octree storage must
be very fast. Thanks to the eÆcient octree traversal algorithm presented in this report, the time of
storing voxels in the octree is negligible in relationship to the rest of the task.

The goal of parallelization is the test determining if the octant does not belong to the surface. In
our case we also include the calculation of the normal vector (only on the last level) for every voxel
for visualization purposes. These tasks are very time-consuming yet parallelization is desirable. We
assign these tasks to several slave processes that run in parallel. The master process creates the slave
processes when the voxelization is required; controls the work balance; kill the slave processes when
the work is done, and displays the voxelized scene. This approach has very promising results, as shown
in section 5.3.

5.1 EÆcient Serial Octree Traversal

Our octree is a classical pointer octree, where the root node is de�ned by a pointer called \octree", as
shown in Fig. 9. This pointer points to an array of pointers with eight elements, each one representing
one eighth of the original volume. A null pointer means that the region is empty, while a non-null
pointer points to another array of eight pointers, further subdividing the region. This process continues
until the leaf node is found, where each non-null pointer points to a voxel.

The eÆciency of our octree lies in its simplicity. We keep one integer variable \mask1" with a set
bit exactly at the bit position \n", where \n" is the current octree level, which is the total number of
octree levels in the beginning (see Fig. 9). We use this bit to �lter the coordinates bits and to control
the algorithm as in the octree ray traversal algorithm in [26].

The algorithm in Fig. 9 is given in a \C-like" pseudo-code. For the sake of clarity the type castings
are omitted; each attribution command is given by a  ; the logical commands are written with its
names (and and or) instead of symbolically, and the recursive stack operations are denoted by push
(to put and element into the stack) and pop (to remove an element from the stack - a pop without
argument only a�ects the stack pointer).

Once initialized, the octree is dynamically created by calling store in octree() for each new
produced voxel. This function receives 4 parameters - the three voxel coordinates (X, Y and Z) and a



char *octree;/* pointer to the �rst free octree byte */
char *free space; /* pointer to the �rst free byte in a block */
int free bytes; /* number of remaining free bytes in a block */
int X ant, Y ant, Z ant, mask1, mask2;

init octree( )
f /* Initialize mask1 and mask2 as follows (each square is a bit) */
/* n = number of octree levels and nb+1 = number of variable bits */

mask1  
nb n-3 n-2 n-1 n n+1 n+2 5 4 3 2 1 0

0 ... 0 0 0 1 0 0 ... 0 0 0 0 0 0

mask2  1 ... 1 1 1 0 0 0 ... 0 0 0 0 0 0

octree free space alloc block(); /* allocates one block */
free bytes Size of Block�Bytes in Cell;
free space free space+Bytes in Cell;
push(octree);
X ant 0; Y ant 0; Z ant 0; /*variables to �nd common parent */
g

store in octree(X,Y,Z,input)
int X,Y,Z;
any input;
f char **pcel;
/* Ascend octree to �nd a common parent */
while ( ( (X and mask2) 6= (X ant and mask2) ) or

( (Y and mask2) 6= (Y ant and mask2) ) or
( (Z and mask2) 6= (Z ant and mask2) ) )

f pop;
mask1 mask1<<1; mask2 mask1<<1;
g

pop(pcel);
while (TRUE) /* Descends octree until the voxel*/
f push(pcel);
if (Z and mask) pcel pcel+4;
if (Y and mask) pcel pcel+2;
if (X and mask) pcel pcel+1;
if ((mask and 1) = 0)
f mask1 mask1>>1; mask2 mask1>>1;
if (*pcel = 0) /* if node does not exist, creates it */
f if (free bytes<Bytes in Cell)
f free space alloc block(); /* allocates one block */
free bytes Size of Block;
g

*pcel free space; /*creates and descends */
pcel free space;
free space free space+Bytes in Cell;
free bytes=free bytes-Bytes in Cell;
g

else pcel *pcel; /* Otherwise descends only*/
g

else break; /* Leaf reachead. Exit loop */
g

X ant X; Y ant Y; Z ant Z;
*pcel input;
g

Figure 9: Octree traversal algorithm

pointer to the voxel content (input). In our case, it is the pointer to the surface normal in the voxel.
A remarkable feature of this algorithm is that it does not require descending all octree levels from

the root. It starts from the cell where the last voxel was stored. In most cases the current voxel will
lie in the same cell or in a nearby relative cell. If it does not lie in the same cell, the algorithm ascends
some levels until the common parent is found. This happens in the �rst part of the algorithm. To �nd
the common parent we use the variable mask2 as shown into the algorithm. This part is extremely
fast because of its simplicity and since the variables used are always in the cache memory.

The next part of the algorithm descends the octree from the common parent cell, creating new cells
when it does not yet exist (when *pcell=0). The code is quite straightforward, thus no further details
are given here. See [26] for a deeper view in this part. Also see [30] which uses similar techniques,
but for a proprietary linear octree.



5.2 EÆcient Parallel Recursive Subdivision

Our parallel implementation is a simple master-slave con�guration. This con�guration was imple-
mented into a shared memory SGI Challenge multi-processor system. The master creates the slaves
and controls their activities. The master maintains an internal work stack where all octants that are
going to be subdivided are stored. Initially, only the �rst eight octants are stored into this stack. The
master creates the slaves and enters into a loop until the work is completed. In this loop, the master
scans for all non-idle slaves queues in search of their results to store them into the stack or, at the
leaf level, into the octree. Initially all slaves are idle; thus only the eight original octants remain in
the stack. After that, it distributes the octants from the stack to the idle slaves, if there are any.

slave( )
f while (TRUE);
f wait for a master job;
get octant(X,Y,Z,my!level);
index  my!index  -1;
for (each of eight sub-octants)
f determine Xs,Ys and Zs for sub-octant;
if (octant(Xs,Ys,Zs,my!level) may contain the surface)
f index  index+1;
if (my!level is leaf);
f put voxel(Xs,Ys,Zs,normal) in my!queue[index]
g

else put octant(Xs,Ys,Zs) in my!queue[index];
my!index=index;
g

g
g

g

master( )
f init octree();
initialize data structures;
push �rst eight octants into work stack;
make copies of slave() to all processors and execute them;

while (there is still work)
f for (each non-idle slave)
f i  slave!master index;
level  slave!level;
if (level is leaf);
f while (i < slave!index)
f i  i+1;
get voxel(X,Y,Z,normal) from slave!queue[i];
store in octree(X,Y,Z,normal);
g

g
else
f while (i < slave!index)
f i  i+1;
get X,Y,Z from slave!queue[i];
push octant (X,Y,Z,level+1) in the work stack;
g

g
slave!master index  i;
g

for (each idle slave)
f pop octant (X,Y,Z,level) from work stack;
if pop was succesful give octant to slave;
g

g
kill all slaves;
g

Figure 10: Parallel recursive subdivision algorithm

Each slave which receives one octant starts to subdivide it and test if the surface is contained
in each sub-octant. This test is the most time-consuming task, thus the focus of our parallelization
algorithm. If the test is true for a given sub-octant, it is stored into the slave queue. This queue has
only eight positions, and can be accessed by two di�erent indices: one for the master and one for the
slave. When the master scans a slave queue it uses its own index. When this index is smaller than
the slave index, it is incremented and the octant from its correspondent position in the slave queue



is transferred to the appropriated data structure. If the slave working octree level is a leaf level, the
octants are voxels and are not written into the working stack but directly into the octree. In this way
the quantity of information passing through the work stack is reduced, thus slightly contributing to
a better performance. Once the slave is �nished and its entire queue has been transferred away, it
becomes idle waiting for a new octant from the master. This process is described by the pseudo-code
in Fig. 10.

5.3 Results

Scene 1 Scene 2 Scene 3

slaves time (sec.) yield time (sec.) yield time (sec.) yield

1 88 � 111 � 71 �
2 45 97% 58 95% 35 100%
3 34 88% 38 97% 23 100%
4 26 84% 31 89% 17 100%
5 21 83% 28 79% 16 88%
6 20 73% 24 77% 14 83%
7 14 89% 21 75% 11 92%

Table 1: Performance results for a voxelization resolution of 5123

Table 1 summarizes our results for a resolution of 5123. Scene 1 is shown in Fig. 11-f; Scene 2, in
Fig. 11-e; and Scene 3, in Fig. 11-a. We show the times as a function of the number of slaves, and
the yield in relationship to the time spent for just one slave. The yield is calculated by dividing the
estimated time ( t1

n
, where t1 is the time for just one slave and n is the number of slaves) by the real

time (tn), that is:

yield =
t1

n � tn

The yield calculated this way gives a clear idea of the slaves' activity. The algorithm was conceived
to have a high parallel performance because the work tends to be evenly distributed among the slaves.
However, the results showed an unexpected outstanding performance in Scene 3 for 2 to 4 slaves and
for 7 slaves. This behavior is probably linked to the fact that this scene contributes to a better cache
coherence. Task distribution is centralized in the work stack, but neighbor regions have a tendency to
be evenly distributed among the processors. When they are done, all information to be copied to the
octree has the tendency to be in approximately the same area, thus increasing the cache coherence
in certain cases. The surprising drop of performance for levels 5 and 6 could also be related to
these problems. Thus, Scene 3 can be considered a good test scene for further improvements of the
algorithm. The improvements can be obtained by forcing the same conditions for other scenes through
the implementation of a smarter task distribution algorithm which takes these facts into account.

The results in Table 1 are very interesting and show that the algorithm deserves further consid-
eration. This is very good news since voxelization times are strongly dependent on the area of the
surface to be voxelized. Therefore, eÆcient parallel algorithms might be helpful in this �eld. Our
results show that the technique presented here is very promising.

6 Robust Voxelization of polygonal meshes

Polygonal meshes could be initially thought of as CSG intersections of planes. In this case, the
object can be represented implicitly by their plane equations using Ricci's set theoretic operators



[19, 17]. This would be a very convenient way to represent a polygon mesh, since it inherits all
implicit surfaces desirable properties, and would allow the robust voxelization of polygon meshes by
applying the algorithm for implicit surfaces explained in section 2. However, this is true only for
meshes de�ning convex objects. In addition, the process of determining if an object is convex is
complex (one method is verifying if every object vertex substituted in every plane equation is less
than or equal to zero).

Star-shape objects (convex objects are a particular case of star-shape objects) de�ned by polygons
can be represented implicitly, having one central point, referred as \object center", from where all
distances would have to be calculated. For any given point in the space a straight line can be de�ned
between that point and the object center. Then, the intersection point between this line and the
correspondent polygon should be calculated. The value of the implicit function in a point would
be the distance between that point and the calculated intersection point. This process is simple
but time consuming. In addition, it is restricted to star-shape objects and not for general polygon
meshes. However, with this approach the algorithm seen in section 2 can be applied to produce robust
voxelization of this kind of objects.

In these two approaches the polygonal mesh is treated as an implicit function and voxelized as
an implicit surface. An advantage of using these approaches is that all implicit surfaces properties,
such as blending, are maintained. However they lack generality. Not every polygonal meshes are
representable.

Another method is considering, as in the �rst approach, the polygons plane equations. The recur-
sive subdivision method of section 2 can be applied by considering these plane equations as implicit
surfaces. At each subdivision level, the octants are tested against the the interval arithmetic version of
the plane equations. If the octant belongs to a given plane, then it is tested against the prism formed
by the polygon largest projection plane formed by two coordinate axis. This prism is perpendicular
to the projection plane, that is, parallel to the third coordinate axis. The prism is produced in a
preprocessing stage by calculating the 2D normal vectors for each polygon edges at the polygon plane.
For each polygon edge de�ned by two points on the polygon plane, P0(x0; y0) and P1(x1; y1), these
normals are calculated as follows:

~N = x �~� + y �~�

x = �(y1 � y0)

y = (x1 � x0)

Once these normals are obtained as indicated, the plane equations are calculated. The CSG
intersection of these planes de�nes the prism. To test if the octant is inside the prism it is enough
to test if the resulting interval lower bound is always negative, after applying the octants intervals
in each interval plane equation of the prism. This assumes the polygons are convex. If the octant is
inside the prism, the corresponding polygon is included in the list of polygons to be analyzed in the
following subdivision. The process follows in this way until the octant is the size of a voxel in the
desired volume where the mesh is being voxelized. If there is only one polygon in the list, this is the
polygon assumed to be contained by the voxel, otherwise the voxel might contain a vertex, de�ned by
at least three polygons, or an edge de�ned by two polygons.

The resulting voxelization is guaranteed to be robust, because of the recursive subdivision and in-
terval arithmetic. In addition, it allows any kind of polygon meshes, including open meshes. However,
the implicit surfaces features are lost, because of the use of the prism to �lter voxels which are outside
the polygon. Several potential neighborhoods are not considered and, thus, compromising desirable
features such as blending. In order to obtain implicit surfaces properties, the prisms would have to be
parallel to the normals of the polygons (thus, respecting Vonoroi boundaries) and the regions outside
the prisms should be classi�ed in relationship to an edge or vertex. Nevertheless, the process starts to
become very complex for non-convex polytopes, since an octant could be classi�ed inside the domain
of several polygons, edges or vertex.



The algorithm described before was implemented using bitmaps where each bit corresponds to
one polygon of the model. Initially, all the bitmap bits are set to one in order to consider all the
polygons. As the subdivision advances, the polygons that are discarded for a given octant are reset
in the bitmap for the following subdivision. If there are no marked polygons for a certain octant, the
octant is rejected.

7 Conclusion

We have proposed in this technical report several techniques for robust voxelization of surfaces. The
use of spatial recursive subdivision and interval arithmetic are the key for most of the methods
presented. The space is subdivided recursively and each octant is considered as three intervals which
are then tested against the interval arithmetic implicit function describing the surface. If the octant
does not contain the surface it is rejected, otherwise it is further subdivided until the �nal resolution
is reached. This method guarantees that no part of the surface is ever missed, de�ning a new concept
in this domain. This concept allows to voxelize an object starting from a previous voxelization of the
same object, instead of revoxelizing the object again. This creates a new paradigm for interactive
walk-throughs using voxels, where objects can be voxelized on the 
y when needed. The eÆciency of
the approach is quite promising as shown in this report.

We have also shown original algorithms for parallel implementation of these voxelization algo-
rithms, and robust voxelization of: polygon meshes, Bezier Surfaces using De Casteljeau subdivision
and implicit surfaces expressed in spherical and cylindrical coordinates. In addition we show a new
concept called \implicit sweep", where an implicit surface can be replicated without extra evaluation
cost, also showing how to voxelize them robustly using interval arithmetic.
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Figure 11: (a) sin(3�)�sin(4�)�R=0 and (b) sin(9�)�sin(18�)�R=0 (c) gear (d) a part of a crank shaft (e)
sin(4�)�sin(8�)�R=0 and (f) Ten spheres blended


